<![CDATA[Newsroom University of Manchester]]> /about/news/ en Tue, 22 Oct 2024 19:50:59 +0200 Mon, 01 Jul 2024 15:21:39 +0200 <![CDATA[Newsroom University of Manchester]]> https://content.presspage.com/clients/150_1369.jpg /about/news/ 144 Creating sustainable large-area electronics of the future /about/news/creating-sustainable-large-area-electronics-of-the-future/ /about/news/creating-sustainable-large-area-electronics-of-the-future/650837The need to tackle climate change is becoming more urgent, making sustainable manufacturing of goods a global concern. However, making all industries sustainable is difficult, especially high-tech sectors like the semiconductor industry. The latter, which is crucial for making electronic devices, has a significant environmental impact, with sizeable portion of a product’s carbon footprint incurred before it even leaves the factory. 

]]>
The need to tackle climate change is becoming more urgent, making sustainable manufacturing of goods a global concern. However, making all industries sustainable is difficult, especially high-tech sectors like the semiconductor industry. The latter, which is crucial for making electronic devices, has a significant environmental impact, with sizeable portion of a product’s carbon footprint incurred before it even leaves the factory. 

]]>
  • Research led by , Professor of Emerging Optoelectronics aims to make sustainable manufacturing a reality in high-tech industries, especially the environmentally impactful semiconductor sector. 
  • His work focuses on developing large-area electronics (LAEs), such as next generation displays, wearable electronics, and sensor for various emerging applications. 
  • Through his work he aims to address a major challenge in LAEs production: combining advanced functionality at reduced manufacturing and environmental costs. 
  • By looking at four research strands in parallel – each tackling a different aspect of LAE – he aims to make transformative advances that will pave the way for the sustainable electronics of the future. 
  • High performing but costly 
    LEAs - unlike traditional electronics, which are typically manufactured on small and rigid substrates like silicon wafers – are made on much larger, often flexible, substrates. This means electronic components can be integrated into different surfaces and materials. Examples of LEAs include: TV sets; mobile phone and tablet screens that can bend or roll (Samsung's Galaxy Fold and LG's flexible OLED displays are good examples); wearable electronics like smart clothing, fitness trackers, and health monitoring devices; printed solar cells; and interactive displays used in e-readers like the Amazon Kindle, which mimic the appearance of ink on paper. 

    LAEs are an emerging field. However, their rapid growth brings challenges like the availability of essential materials, energy-efficient manufacturing, device performance, and product end-of-life solutions. One major challenge in producing LAEs is balancing the users’ desire for functionality with the need to reduce costs. To address this, LAEs are currently combined with silicon chips. However, while this supports functionality, it increases carbon emissions significantly. 

    Rethinking manufacturing 
    To tackle this issue, Thomas Anthopoulos with his team at The University of Manchester is undertaking fundamental research designed to rethink manufacturing methods. His goal is to look at the fundamental science and develop scalable and energy efficient techniques that can produce LAEs capable of seamlessly integrating with the existing electronics infrastructure, while enabling additional functionalities. 

    Addressing manufacturing bottlenecks 
    Building on previous research focused on LEAs, Professor Anthopoulos will look to advance LAEs by addressing crucial manufacturing bottlenecks such as the trade-off between high throughput production and high precision patterning. His approach comprises four research thrusts that aim to address these key aspects and include: 

    1. Developing new patterning paradigms for scalable and sustainable production of LAEs. 
    2. Demonstrating energy-efficient material growth methods. 
    3. Exploring eco-friendly materials that are abundant. 
    4. Demonstrate advanced LAEs that can interact with the existing electronic infrastructure. 

    Maximising impact 
    Delivering a paradigm shift in how LAEs with nanometre-size critical features are manufactured, is the core aim of this programme. By addressing the fundamental science, Professor Anthopoulos aims to deliver research that benefit the economy, academia, and society. 

    For industry, the outcome of this research has the potential to empower UK companies. For example, the global LAEs market is expected to grow rapidly in the coming years. This prediction, however, relies on the technology being adopted successfully in various emerging areas. Thus, access to innovative technologies can help UK companies remain frontrunners and capture this market, benefiting everyone involved. 

    In the academic world, Professor Anthopoulos’s approach will create new knowledge about sustainable electronics, encourage collaboration between different fields, advance sustainable electronics, train junior researchers, and attract top talent to the UK. 

    The program will also benefit the public. Sustainable production of LAEs will enable new electronic functions with minimal environmental impact, while easing society’s reliance on polluting silicon chips. These innovative technologies will create new possibilities in personal health, education, entertainment, among other, positively impacting society. 

    Professor Anthopoulos explains more about his approach. “I am interested in fundamental research that has potential for practical applications. I very much enjoying approaching a problem from a different viewpoint and pursuing cross-disciplinary research is a key element of it. 91ֱ has a rich history, with the isolation of graphene serving as a prime example of how a new perspective can lead to groundbreaking discoveries.” 

    “I am also a firm believer in multidisciplinary collaboration; trying to increase the impact of my work by working with people with different expertise while learning new things. 91ֱ has a strong reputation in large-area electronics, including flexible and printed electronics, advanced functional materials, and manufacturing. Crucially, we are home to unique facilities like the National Graphene Institute (NGI), the Henry Royce Institute for Advanced Materials, and the Photon Science Institute, all located on campus, and all unique in the UK. Moreover, the university’s extensive partnerships with industry leaders offer additional opportunities for further collaborations, networking, and potential commercialization of promising research findings.

    “Last but not least, the university has a global reputation in climate change, sustainability, and energy policy. This makes 91ֱ the ideal place for my research, which at its very heart is aimed at making electronics of the future more sustainable and valuable to our society.” 

    About Thomas Anthopoulos 
    Thomas Anthopoulos is Professor of Emerging Optoelectronics at The University of Manchester. He is recognised as a world-leading expert in the science and technology of large-area optoelectronics with ground-breaking contributions to the advancement of soluble organic and inorganic semiconductors. Recent examples include the development of printable Schottky diodes with record operating frequency (Nature Electronics 2020), rapid and scalable manufacturing methods for radio frequency diodes using light (Nature Communications 2022), and the development of record-efficient printed organic photovoltaics featuring self-assembled molecular interlayers (ACS Energy Letters 2020; Advanced Energy Materials 2022). 

    Related papers  

    The Photon Science Institute (PSI)
    The PSI enables and catalyses world-leading science and innovation using the tools of cutting-edge photonics, spectroscopy, and imaging. Its lead pioneering research in photonic, electronic and quantum materials and devices, advanced instrumentation development, and BioPhotonics and bioanalytical spectroscopy.

    To discuss this research further, contact Professor Anthopoulos at thomas.anthopoulos@manchester.ac.uk

    ]]>
    Mon, 01 Jul 2024 13:18:15 +0100 https://content.presspage.com/uploads/1369/6f2b3b58-76b9-4845-9625-9aec297e560f/500_turing1000x1000.jpg?10000 https://content.presspage.com/uploads/1369/6f2b3b58-76b9-4845-9625-9aec297e560f/turing1000x1000.jpg?10000
    91ֱ AI expert helps local SME develop the technology to battle battery waste /about/news/manchester-ai-expert-helps-local-sme-develop-the-technology-to-battle-battery-waste/ /about/news/manchester-ai-expert-helps-local-sme-develop-the-technology-to-battle-battery-waste/637368A partnership between University of Manchester academics and Lion Vision, a North West-based Artificial Intelligence (AI) specialist, has made a breakthrough with successful launch of a product poised to revolutionise the waste and recycling industry. 

    ]]>
    A partnership between University of Manchester academics and Lion Vision, a North West-based Artificial Intelligence (AI) specialist, has made a breakthrough with successful launch of a product poised to revolutionise the waste and recycling industry. 

    Research from Material Focus, the not-for-profit organisation funded by the waste electrical and electronic equipment (WEEE), found that “batteries that have not been removed from unwanted electricals cause more than 700 fires annually in refuse collection vehicles (RCVs) and at household waste recycling centres (HWRCs).” Batteries are also thought to cause an estimated 48% of all waste fires in the UK each year, with the cost to the UK thought to be in the region of £158 million annually. 

    The team of entrepreneurs behind Lion Vision, along with the University, successfully applied to the Knowledge Transfer Partnerships (KTP) programme run by Innovate UK and was given a grant of more than £125,000 to assist in the quest to deliver a battery detection system. They partnered with Professor Hujun Yin, Professor of Artificial Intelligence in the School of Engineering, to bring their concept to life. 

    The new technology has now been proven to reduce the existential threat of lithium-ion batteries and the environmental impact they pose within society and waste streams globally. The system combines advanced vision systems with innovative machine-learning techniques to detect, visualise and extract lithium-ion batteries and other hazardous items from the waste stream, using real-time analytics to identify where the flammable batteries are and how they should be removed. 

    As waste passes underneath it, the Lion Vision system can analyse more than half a million images in a 24-hour window and detect more than 600 cylinder batteries per hour. While the system is currently focused on detecting cylinder batteries, it can be programmed to detect more than 40 battery subtypes and other hazardous objects such as vapes. 

    The detection system is now in place at a range of sites across the UK, most notably at SWEEEP in Kent which processes 100 tons of waste electrical and electronic equipment (WEEE) per day. Typically, amongst this waste, the Lion Vision system is detecting more than 4500-cylinder batteries daily. 

    Hujun Yin, Professor of Artificial Intelligence, based in the Department of Electrical and Electronic Engineering said, “My work in AI and vision systems has often given me insight into challenges that society faces, and this project was no exception. While policy change and progress should be pursued, we cannot underestimate the environmental damage that is being caused by lithium-ion batteries. It is our responsibility to find engineering solutions to these problems. I have no doubt that the system created by the partnership and the team at Lion Vision will have a significant impact on the waste industry.” 

    Today’s news is an example of a University of Manchester Knowledge Exchange (KE) project, which match businesses with researchers, in order to increase the company’s economic growth. 91ֱ’s KE programmes are delivered by the University’s Business Engagement and Knowledge Exchange Team and can support companies at any stage of their project — from applying for funding, to project planning and evaluation. Its team of experts deliver opportunities through innovative and supportive schemes: Impact Acceleration Accounts and Knowledge Transfer Partnerships. 

    Contact collaborate@manchester.ac.uk to discuss Knowledge Exchange further. 

    ---- 

    Professor Hujun Yin's main research interests include AI, machine learning, deep learning, image recognition, and data analytics. Recent projects focus on developing deep learning-based vision systems for recycling industries, advanced machine learning for multispectral image analysis for early detection of plant viral infection, and data-driven surrogate models in engineering designs. He was a Turing Fellow of the ATI (the Alan Turing Institute) 2018-2023, a senior member of the IEEE since 2003, and a member of the EPSRC Peer Review College. He has been the Chair of the IEEE CIS UK and Ireland Chapter since 2023. He leads a team of 12 researchers working in a wide range of vision and machine learning challenges with strong emphasis on real-world medical, sustainable and industrial applications. 

    Read recent papers: 

    • Feature-Enhanced Representation with Transformers for Multi-View Stereo 
    • High-Frequency Channel Attention and Contrastive Learning for Image Super-Resolution 
    • A Divide-and-Conquer Machine Learning Approach for Modelling Turbulent Flows 
    •  
    • DRLFluent: A distributed co-simulation framework coupling deep reinforcement learning with Ansys-Fluent on high-performance computing systems 
    • Manifold-enhanced CycleGAN for facial expression synthesis 

    To discuss this research or potential partnerships, contact Professor Yin at hujun.yin@manchester.ac.uk.
     

    ]]>
    Fri, 21 Jun 2024 14:27:16 +0100 https://content.presspage.com/uploads/1369/2b3f90d9-74a3-4dee-9e35-24d3a6e03be1/500_featured.jpg?10000 https://content.presspage.com/uploads/1369/2b3f90d9-74a3-4dee-9e35-24d3a6e03be1/featured.jpg?10000
    Nanoengineering at the Summer Science Exhibition /about/news/nanoengineering-at-the-summer-science-exhibition/ /about/news/nanoengineering-at-the-summer-science-exhibition/637362Each year holds a Summer Science Exhibition at its Carlton House Terrace home in London, where world-leading researchers from universities and science institutions across the UK gather to celebrate cutting-edge science. 

    ]]>

    The University of Manchester takes a full role in the exhibition and this year is no exception, with a , created by the research group.

    The Group was created thanks to an EPSRC Programme Grant, and set up with the aim of revolutionising the design and delivery of functionality on demand at the nanoscale within advanced materials. The group is a collaboration with the University of Leeds and Imperial College London, and includes the University's , along with Jayadev Vijayan, Jessica Boland, Maddison Coke, Daniel Blight, and Mason Adshead. The University of Manchester members of the group recently produced the world’s purest silicon.

    Nanoengineering is the science of creating materials at atomic scale. It holds the key to solving some of the world’s biggest challenges, from increasing computing power to harnessing energy more efficiently. 

    Through an immersive three-step experience, the University's stand will bring materials to life at the atomic scale, and reveal how they can shape our future 

    Visitors will also be able to learn from a team which has been working for years at the forefront of nanoengineering. A team which: 

    • Has created the world’s purest silicon – the critical ‘brick’ needed to construct a silicon-based quantum computer; 
    • Uses equipment that can’t be found anywhere else in the world, like P-NAME, an ion implantation tool that can ‘dope’ materials to one ion with 20 nanometre accuracy; 
    • Contains experts in atomic force microscopy (AFM), a tool which uses a mechanism similar to a vinyl record player to characterise a material, atom by atom. 

    The Summer Science Exhibition takes place from 2 – 7 July, and is an interactive experience open to everyone with a curious mind. This is a free event and no ticket is required, but you will need to on Eventbrite. 

    about the Exhibition.

    ]]>
    Fri, 21 Jun 2024 14:15:27 +0100 https://content.presspage.com/uploads/1369/ac559c49-2c99-4f78-a0da-8ae8fcd9cbe3/500_featured1000x1000.jpg?10000 https://content.presspage.com/uploads/1369/ac559c49-2c99-4f78-a0da-8ae8fcd9cbe3/featured1000x1000.jpg?10000
    Scientists make quantum breakthrough in 2D materials /about/news/scientists-make-quantum-breakthrough-in-2d-materials/ /about/news/scientists-make-quantum-breakthrough-in-2d-materials/632112Scientists have discovered that a ‘single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature, underscoring the potential of 2D materials in advancing quantum technologies.

    ]]>
    Scientists have discovered that a ‘single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature, underscoring the potential of 2D materials in advancing quantum technologies.

    The defect, found by researchers from the Universities of Manchester and Cambridge using a thin material called Hexagonal Boron Nitride (hBN), demonstrates spin coherence—a property where an electronic spin can retain quantum information— under ambient conditions. They also found that these spins can be controlled with light.

    Up until now, only a few solid-state materials have been able to do this, marking a significant step forward in quantum technologies.

    The findings published in , further confirm that the accessible spin coherence at room temperature is longer than the researchers initially imagined it could be.

    Carmem M. Gilardoni, co-author of the paper and postdoctoral fellow at the Cavendish Laboratory at the University of Cambridge, where the research was carried out, said: “The results show that once we write a certain quantum state onto the spin of these electrons, this information is stored for ~1 millionth of a second, making this system a very promising platform for quantum applications.

    “This may seem short, but the interesting thing is that this system does not require special conditions – it can store the spin quantum state even at room temperature and with no requirement for large magnets.”

    Hexagonal Boron Nitride (hBN) is an ultra-thin material made up of stacked one-atom-thick layers, kind of like sheets of paper. These layers are held together by forces between molecules, but sometimes, there are tiny flaws between these layers called ‘atomic defects’, similar to a crystal with molecules trapped inside it. These defects can absorb and emit light that we can see, and they can also act as local traps for electrons. Because of the defects in hBN, scientists can now study how these trapped electrons behave, particularly the spin property, which allows electrons to interact with magnetic fields. They can also control and manipulate the electron spins using light within these defects at room temperature – something that has never been done before.

    Dr Hannah Stern, first author of the paper and Royal Society University Research Fellow and Lecturer at The University of Manchester, said: “Working with this system has highlighted to us the power of the fundamental investigation of new materials. As for the hBN system, as a field we can harness excited state dynamics in other new material platforms for use in future quantum technologies.

    “Each new promising system will broaden the toolkit of available materials, and every new step in this direction will advance the scalable implementation of quantum technologies.”

    Prof Richard Curry added: “Research into materials for quantum technologies is critical to support the UK’s ambitions in this area. This work represents another leading breakthrough from a University of Manchester researcher in the area of materials for quantum technologies, further strengthening the international impact of our work in this field.”

    Although there is a lot to investigate before it is mature enough for technological applications, the finding paves the way for future technological applications, particularly in sensing technology.

    The scientists are still figuring out how to make these defects even better and more reliable and are currently probing how far they can extend the spin storage time. They are also investigating whether they can optimise the system and material parameters that are important for quantum-technological applications, such as defect stability over time and the quality of the light emitted by this defect.

    ]]>
    Mon, 20 May 2024 10:00:00 +0100 https://content.presspage.com/uploads/1369/48eb6081-4db1-406f-a5a0-ee812f0753c8/500_quantumstock.jpg?10000 https://content.presspage.com/uploads/1369/48eb6081-4db1-406f-a5a0-ee812f0753c8/quantumstock.jpg?10000
    Quantum breakthrough: World’s purest silicon brings scientists one step closer to scaling up quantum computers /about/news/quantum-breakthrough-worlds-purest-silicon-brings-scientists-one-step-closer-to-scaling-up-quantum-computers/ /about/news/quantum-breakthrough-worlds-purest-silicon-brings-scientists-one-step-closer-to-scaling-up-quantum-computers/630616Scientists at The University of Manchester have produced an enhanced, ultra-pure form of silicon that allows construction of high-performance qubit devices – a fundamental component required to pave the way towards scalable quantum computers.

    ]]>
    More than 100 years ago, scientists at The University of Manchester changed the world when they discovered the nucleus in atoms, marking the birth of nuclear physics.

    Fast forward to today, and history repeats itself, this time in quantum computing.

    Building on the same pioneering method forged by Ernest Rutherford – "the founder of nuclear physics" – scientists at the University, in collaboration with the University of Melbourne in Australia, have produced an enhanced, ultra-pure form of silicon that allows construction of high-performance qubit devices – a fundamental component required to pave the way towards scalable quantum computers.

    The finding, published in the journal Communications Materials - Nature, could define and push forward the future of quantum computing.

    Richard Curry, Professor of Advanced Electronic Materials at The University of Manchester, said: “What we’ve been able to do is effectively create a critical ‘brick’ needed to construct a silicon-based quantum computer. It’s a crucial step to making a technology that has the potential to be transformative for humankind - feasible; a technology that could give us the capability to process data at such as scale, that we will be able to find solutions to complex issues such as addressing the impact of climate change and tackling healthcare challenges.  

    “It is fitting that this achievement aligns with the 200th anniversary of our University, where 91ֱ has been at the forefront of science innovation throughout this time, including Rutherford’s ‘splitting the atom’ discovery in 1917, then in 1948 with ‘The Baby’ - the first ever real-life demonstration of electronic stored-program computing, now with this step towards quantum computing.”

    One of the biggest challenges in the development of quantum computers is that qubits – the building blocks of quantum computing - are highly sensitive and require a stable environment to maintain the information they hold. Even tiny changes in their environment, including temperature fluctuations can cause computer errors.

    Another issue is their scale, both their physical size and processing power. Ten qubits have the same processing power as 1,024 bits in a normal computer and can potentially occupy much smaller volume. Scientists believe a fully performing quantum computer needs around one million qubits, which provides the capability unfeasible by any classical computer.

    Silicon is the underpinning material in classical computing due to its semiconductor properties and the researchers believe it could be the answer to scalable quantum computers. Scientists have spent the last 60 years learning how to engineer silicon to make it perform to the best of its ability, but in quantum computing, it has its challenges.

    Natural silicon is made up of three atoms of different mass (called isotopes) – silicon 28, 29 and 30. However the Si-29, making up around 5% of silicon, causes a ‘nuclear flip flopping’ effect causing the qubit to lose information.

    In a breakthrough at The University of Manchester, scientists have come up with a way to engineer silicon to remove the silicon 29 and 30 atoms, making it the perfect material to make quantum computers at scale, and with high accuracy.

    The result – the world’s purest silicon – provides a pathway to the creation of one million qubits, which may be fabricated to the size of pin head.

    Ravi Acharya, a PhD researcher who performed experimental work in the project, explained: "The great advantage of silicon quantum computing is that the same techniques that are used to manufacture the electronic chips currently within an everyday computer that consist of billions of transistors can be used to create qubits for silicon-based quantum devices. The ability to create high quality Silicon qubits has in part been limited to date by the purity of the silicon starting material used. The breakthrough purity we show here solves this problem."

    The new capability offers a roadmap towards scalable quantum devices with unparalleled performance and capabilities and holds promise of transforming technologies in ways hard to imagine.

    Project co-supervisor, Professor David Jamieson, from the University of Melbourne, said: “Our technique opens the path to reliable quantum computers that promise step changes across society, including in artificial intelligence, secure data and communications, vaccine and drug design, and energy use, logistics and manufacturing.

    “Now that we can produce extremely pure silicon-28, our next step will be to demonstrate that we can sustain quantum coherence for many qubits simultaneously. A reliable quantum computer with just 30 qubits would exceed the power of today's supercomputers for some applications,”

    What is quantum computing and how does it work?

    All computers operate using electrons. As well as having a negative charge, electrons have another property known as ‘spin’, which is often compared to a spinning top.

    The combined spin of the electrons inside a computer’s memory can create a magnetic field. The direction of this magnetic field can be used to create a code where one direction is called ‘0’ and the other direction is called ‘1’. This then allows us to use a number system that only uses 0 and 1 to give instructions to the computer. Each 0 or 1 is called a bit.

    In a quantum computer, rather than the combined effect of the spin of many millions of electrons, we can use the spin of single electrons, moving from working in the ‘classical’ world to the ‘quantum’ world; from using ‘bits’ to ‘qubits’.

    While classical computers do one calculation after another, quantum computers can do all the calculations at the same time allowing them to process vast amounts of information and perform very complex calculations at an unrivalled speed.

    ]]>
    Tue, 07 May 2024 10:00:00 +0100 https://content.presspage.com/uploads/1369/b23da347-f30d-49e7-bb09-8d31f81ce454/500_quantum-siliconstory-9.jpg?10000 https://content.presspage.com/uploads/1369/b23da347-f30d-49e7-bb09-8d31f81ce454/quantum-siliconstory-9.jpg?10000
    World-first analytical Transmission Electron Microscope being developed by 91ֱ materials scientists /about/news/world-first-analytical-transmission-electron-microscope-being-developed-by-manchester-materials-scientists/ /about/news/world-first-analytical-transmission-electron-microscope-being-developed-by-manchester-materials-scientists/62961991ֱ scientists are developing a world-first Transmission Electron Microscope (TEM) that integrates cutting-edge imaging and spectroscopy with artificial intelligence and automated workflows (AutomaTEM).

    ]]>
    91ֱ scientists are developing a world-first Transmission Electron Microscope (TEM) that integrates cutting-edge imaging and spectroscopy with artificial intelligence and automated workflows (AutomaTEM).

    While existing TEMs can image atomic scale structure and chemistry, the time-consuming nature of the technique means the typical regions of interest (ROI) - areas of the sample selected for further analysis - are very limited. The AutomaTEM will resolve this, improving the ability to find and analyse, reducing time incurred while increasing the ROI. As a result, it will accelerate innovation in materials applications for quantum computing, low power electronics, and new catalysts to support the energy transition, all which are currently held back by the limitations of current technology.

    The AutomaTEM development is funded through a £9.5 million project supported by The University of Manchester, The Henry Royce Institute, bp and EPSRC, in collaboration with manufacturer Thermo Fisher Scientific. The 91ֱ team, led by Professor Sarah Haigh, will merge TEM’s existing atomic scale elemental and chemical mapping capabilities together with emerging developments in automation and data analysis to create the AutomaTEM; an instrument that can acquire huge data sets of local chemical information in days rather than years.

    Prof , Professor of Materials Characterisation at The University of Manchester and Director of the Electron Microscopy Centre (EMC), said: "Understanding atomic detail at the micrometer or millimeter scale is crucial for developing materials for various applications, from catalysis and quantum technologies to nuclear energy and pharmaceuticals.

    "This system is not simply another TEM instrument. It will provide new opportunities for atomic scale investigation of materials with less human intervention. For the first time we will be able to enable atomic resolution analysis of hundreds of regions of interest in a matter of hours, providing unprecedented insights into sparse defects and heterogeneous materials." 

    Designed with artificial intelligence and automated workflows at its core, the AutomaTEM boasts several cutting-edge features, including:

    • Computer control to automatically adjust the sample stage and beam to address specific regions of interest, enabling detailed high-resolution imaging and diffraction-based analysis without continuous operator interaction.
    • Machine learning integration to segment lower resolution data and build functional relationships between experimental results, enhancing the identification of novel features. 
    • A world-leading Energy Dispersive X-ray Spectroscopy (EDS) system with exceptional collection efficiency, providing precise compositional analysis.
    • A new high-performance electron energy loss spectrometer (EELS) design for chemical analysis of diverse species in complex systems.

    Custom built, it is being developed in collaboration with Thermo Fisher Scientific and will arrive in summer 2025. The global laboratory equipment manufacturer has provided Professor Haigh’s team access to the necessary API control, and will supply an energy dispersive X-ray spectroscopy (EDS) system with a world-leading collection efficiency of 4.5 srad.

    The AutomaTEM will be housed in The University of Manchester's state-of-the-art (EMC), one of the largest in the UK. The EMC already has 6 transmission electron microscopes (TEMs), 13 scanning electron microscopes (SEMs), and 6 focussed ion beam (FIB) instruments. It supports more than 500 internal users, from 12 different University of Manchester Departments, and welcomes users from institutes across the world, including Cardiff, Durham, Queen Mary and 91ֱ Metropolitan universities, University of Cape Town (SA), Ceres Power, Nexperia, Nanoco, bp, Johnson Matthey, Oxford Instruments, and UKAEA.

    AutomaTEM will be available to external users for free proof of principle academic projects for up to 30 per cent of its total use during the first three years to help foster collaboration and advance research capabilities.

    , Royal Society University Research Fellow at The University of Manchester, who is leading co-investigator on the project, said: "The faster, more accurate analysis capabilities of AutomaTEM represent a significant leap forward in materials science research.

    “With the potential to impact various industries, including aerospace, automotive, and semiconductor, the AutomaTEM aims to support the UK’s position at the forefront of materials science innovation.”

    Today’s announcement consolidates The University of Manchester’s reputation at the forefront of advanced materials research. Home to highest concentration of materials scientists in UK academia, it hosts several national centres for Advanced Materials research including the Henry Royce Institute - the UK national institute for Advanced Materials Research; the bp-ICAM, a global partnership to enable the effective application of advanced materials for the transition to net zero; the National Centre for X-ray Computational Tomography; and the National Graphene Institute, the world-leading interdisciplinary centre for graphene and 2D materials research.

    ]]>
    Wed, 24 Apr 2024 09:22:31 +0100 https://content.presspage.com/uploads/1369/d57a1ed2-2ddc-4620-899a-00dad69853f0/500_sarahhaighprofessorofmaterialscharacterisationattheuniversityofmanchesteranddirectoroftheelectronmicroscopycentreemcphotographedintheemc..jpg?10000 https://content.presspage.com/uploads/1369/d57a1ed2-2ddc-4620-899a-00dad69853f0/sarahhaighprofessorofmaterialscharacterisationattheuniversityofmanchesteranddirectoroftheelectronmicroscopycentreemcphotographedintheemc..jpg?10000
    Scientists urge action over life-threatening pollution from solar power waste in Africa /about/news/scientists-urge-action-over-life-threatening-pollution-from-solar-power-waste-in-africa/ /about/news/scientists-urge-action-over-life-threatening-pollution-from-solar-power-waste-in-africa/629147Researchers from The University of Manchester investigating waste management practices for off-grid solar technologies in Malawi have discovered life-threatening quantities of lead pollution from improperly managed battery waste.

    ]]>
    Researchers from The University of Manchester investigating waste management practices for off-grid solar technologies in Malawi have discovered life-threatening quantities of lead pollution from improperly managed battery waste.

    Common informal recycling activities for lead-acid batteries used in solar energy systems were recorded to release 3.5-4.7 kg of lead pollution from a typical battery, which is equivalent to more than 100 times the lethal oral dose of lead for an adult.

    Off-grid solar technologies are used to provide power to areas lacking traditional grid connections and are crucial for expanding electricity access across sub-Saharan Africa. The private market for off-grid solar electrification technologies is expected to provide electricity access to hundreds of millions of people by 2030, subsidized by global energy companies in the Global North, including the UK. Meanwhile, household scale off-grid solar energy systems in sub-Saharan Africa mostly depend on lead-acid batteries as the most affordable and established energy storage technology.

    But the scientists warn that the absence of formal waste management infrastructure presents major human health and environmental risks and urge government intervention immediately.

    This research, published today in the journal , was led by Dr Christopher Kinally for his PhD at The University of Manchester, funded by EPSRC.

    Dr Kinally said: “The private market for off-grid solar products is a very effective way to increase access to electricity, which is crucial for sustainable development. However, the resulting toxic waste flow is growing rapidly across regions that do not have the infrastructure to safely manage electronic waste.

    “Without developing infrastructure, legislation and education around these technologies, there are severe public health risks. Significant social, economic and legislative interventions are required for these solar products to be considered as a safe, low-carbon technology in sub-Saharan Africa.”

    Toxic informal waste management practices are known to be common for automotive batteries and electronic waste in low- and middle-income countries, but the environmental and health impacts of these practices have been widely overlooked. Now, efforts to promote sustainable development and electricity access are adding to these life-threatening waste streams.

    Dr Kinally recorded that within suburban communities in Malawi, lead-acid batteries from solar energy systems are being refurbished openly on busy market streets by self-taught technicians, who are not aware of the toxicity of the materials they are handling.

    He found that batteries are broken open with machetes, lead is melted over charcoal cooking stoves, and improvised lead battery cells are made by hand. In the process, approximately half of the lead content from each battery is leaked into the surrounding environment, releasing the equivalent of more than 100 lethal oral lead doses from a single battery into densely populated communities. 

    This is the first data to quantify lead pollution from the informal recycling of lead-acid batteries from solar energy systems.  

    Dr Alejandro Gallego Schmid, primary supervisor of the PhD and Senior Lecturer in Circular Economy and Life Cycle Sustainability Assessment at The University of Manchester, added: “The problem is not the use a renewable source like solar energy, but the lack of appropriate treatment of the batteries at the end of life. We urgently need further research to reveal the health impacts of the identified flows of toxic pollution from solar batteries.”

    Lead is a potent neurotoxin, and very low levels of lead exposure is known to permanently impact a child’s brain development. UNICEF have estimated that 800 million children across low- and middle-income countries have lead poisoning.

    This widespread lead pollution is largely driven by improperly managed automotive battery waste and is expected to have substantial health and economic impacts across the Global South yet continues to be overlooked.  

    Prior publications from the research team also highlight that the private off-grid solar market suffers from a general lack of supplier accountability and substandard, short-lived and counterfeit off-grid solar products were found to be common in Malawi, exploiting vulnerable energy-poor populations.

    A lack of education about how to build and use these solar energy systems, which are particularly vulnerable to damage from improper use, is also severely limiting the lifetimes of batteries in off-grid solar energy systems.

    Batteries in Malawi were recorded to often fail within a year, far shorter than the 3-5 year expected lifetime, accelerating the toxic waste flow. Meanwhile, the environmental impacts (including carbon emissions) from manufacturing and replacing short lived lead-acid batteries is compromising the sustainability and environmental benefits of solar energy systems.

    Dr Fernando Antoñanzas, co-supervisor of the PhD, added: “This study brings more light on the maintenance and end-of-life phases of small off-grid solar projects, indeed left unattended in most cooperation projects. While informal lead-acid battery recycling offers a short-term solution for electrification for the poorest, at the same time, represents an enormous public health risk across Sub-Saharan Africa."

    The research team has also provided policy recommendations for waste management solutions, including changes to how solar energy companies receive investments from the UK and Global North.

    ]]>
    Fri, 19 Apr 2024 08:42:10 +0100 https://content.presspage.com/uploads/1369/926f3425-830d-4743-ab41-00c7b563b56d/500_p1090174-2.jpg?10000 https://content.presspage.com/uploads/1369/926f3425-830d-4743-ab41-00c7b563b56d/p1090174-2.jpg?10000
    Revolutionary molecular device unleashes potential for targeted drug delivery and self-healing materials /about/news/revolutionary-molecular-device-unleashes-potential-for-targeted-drug-delivery-and-self-healing-materials/ /about/news/revolutionary-molecular-device-unleashes-potential-for-targeted-drug-delivery-and-self-healing-materials/627331In a new breakthrough that could revolutionise medical and material engineering, scientists have developed a first-of-its-kind molecular device that controls the release of multiple small molecules using force.

    ]]>
    In a new breakthrough that could revolutionise medical and material engineering, scientists have developed a first-of-its-kind molecular device that controls the release of multiple small molecules using force.

    describe a force-controlled release system that harnesses natural forces to trigger targeted release of molecules, which could significantly advance medical treatment and smart materials.

    The discovery, published today in the journal , uses a novel technique using a type of interlocked molecule known as rotaxane. Under the influence of mechanical force - such as that observed at an injured or damaged site - this component triggers the release of functional molecules, like medicines or healing agents, to precisely target the area in need. For example, the site of a tumour.

    It also holds promise for self-healing materials that can repair themselves in situ when damaged, prolonging the lifespan of these materials. For example, a scratch on a phone screen.

    Traditionally, the controlled release of molecules with force has presented challenges in releasing more than one molecule at once, usually operating through a molecular "tug of war" game where two polymers pull at either side to release a single molecule.

    The new approach involves two polymer chains attached to a central ring-like structure that slide along an axle supporting the cargo, effectively releasing multiple cargo molecules in response to force application. The scientists demonstrated the release of up to five molecules simultaneously with the possibility of releasing more, overcoming previous limitations.

    The breakthrough marks the first time scientists have been able to demonstrate the ability to release more than one component, making it one of the most efficient release systems to date.

    The researchers also show versatility of the model by using different types of molecules, including drug compounds, fluorescent markers, catalyst and monomers, revealing the potential for a wealth of future applications.

    Looking ahead, the researchers aim to delve deeper into self-healing applications, exploring whether two different types of molecules can be released at the same time. For example, the integration of monomers and catalysts could enable polymerization at the site of damage, creating an integrated self-healing system within materials.

    They will also look to expand the sort of molecules that can be released.

    said: "We've barely scratched the surface of what this technology can achieve. The possibilities are limitless, and we're excited to explore further."

    ]]>
    Wed, 10 Apr 2024 16:00:00 +0100 https://content.presspage.com/uploads/1369/1017c164-321e-4e9f-b59f-731476f8ef7c/500_2024-01-25-debo-cover-suggestion-mechanochemistry.jpeg?10000 https://content.presspage.com/uploads/1369/1017c164-321e-4e9f-b59f-731476f8ef7c/2024-01-25-debo-cover-suggestion-mechanochemistry.jpeg?10000
    Developing high-entropy materials for sustainable applications /about/news/developing-high-entropy-materials-for-sustainable-applications/ /about/news/developing-high-entropy-materials-for-sustainable-applications/623668·        A team based in The University of Manchester’s Department of Materials are leading  research into inorganic high-entropy materials.
    ·        Engineering from the atom up, they are creating previously unseen materials with emergent properties as a function of both their composition and their length scale.
    ·        They have employed them as electrocatalysts for green hydrogen generation from water splitting.

    ]]>
  • A team based in The University of Manchester’s Department of Materials are leading  research into inorganic high-entropy materials.
  • Engineering from the atom up, they are creating previously unseen materials with emergent properties as a function of both their composition and their length scale.
  • They have employed them as electrocatalysts for green hydrogen generation from water splitting.
  • 91ֱ scientists are driving research into the capabilities of inorganic high-entropy materials (HEMs). HEMs diverge away from the traditional picture of a material – i.e. something stabilised by creating bonds with other atoms – because their structure, somewhat paradoxically, is stabilised by disorder. It is this disorder makes them a potentially disruptive technology for sustainable energy generation including thermoelectric energy generation, batteries for energy storage, chemical catalysis and electrocatalysis.

    Engineering new materials with exciting properties

    Led by , Head of the Department of Materials, the team of material scientists is engineering high-entropy materials from the bottom up. By adding a ‘cocktail’ of different metal atoms into the lattice, they are devising materials that are that have never been discovered before, and have some very exciting properties.

    Through this work, the team have uncovered a range of capabilities in the materials. For example, their aptitude for electrocatalytic water splitting

    Because HEMs contain so many different unique sites within the material, the  materials also have great potential as a disruptive technology in chemical catalysis.

    Professor David Lewis explains, “It's almost like combinatorial chemistry at the atomic scale. This can be illustrated with a simple calculation. If one starts to imagine the number of unique sites in a high entropy material which contains six or more different elements, including the three nearest neighbour atoms, you’re looking at combinations in the order of 1033. Compare that to the amount of known ‘vanilla materials’ as I would call them, well there’s only about 1012 of those – so you can really start to produce almost unimaginable combinations of active sites within a catalyst. We have also shown that this approach can activate different structural features in electrocatalysts that lie dormant in the parent materials, and with it, improvements in efficiency

    In addition to this Professor Lewis’ team were the first to show how these materials could also exhibit quantum confinement at short (10-9 m) length scales leading to the .

    Looking to the Future

    Professor Lewis’ team builds high-entropy materials from the atom up, arguing in a recent that this route, in general, presents the best strategy for ensuring entropic stabilisation. This means the team can control the composition of a material, from the composition of the molecular precursors that were put into the pot at the start. Despite the growth of interest in high entropy materials there still remains many challenges in their characterisation and computational simulation of the systems and Professor Lewis’ research will address these questions going forward.

    Professor Lewis says: “There are still a number of outstanding challenges, and the nature of these are very interdisciplinary. I have been lucky enough to be able to collaborate with many other academics all at the same institution that share my interest in these problems. To me, therefore, 91ֱ is the ideal place to conduct this research.”

    ---

    is the Head of the Department of Materials at The University of Manchester. His other research interests include synthesis of compound semiconductors and inexpensive alternatives to traditional energy generation materials, 2D materials beyond graphene, and quantum dots.

    Read recent papers:

    •  

    To discuss this research or potential partnerships, contact Professor Lewis via david.lewis-4@manchester.ac.uk.

    ]]>
    Tue, 12 Mar 2024 11:32:28 +0000 https://content.presspage.com/uploads/1369/ccdb16f4-129c-4fd1-93e9-db12199f7aa0/500_lewis1000x1000.jpg?10000 https://content.presspage.com/uploads/1369/ccdb16f4-129c-4fd1-93e9-db12199f7aa0/lewis1000x1000.jpg?10000
    91ֱ spin-out secures €3 million to develop long-duration energy storage /about/news/manchester-spin-out-secures-3-million-to-develop-long-duration-energy-storage/ /about/news/manchester-spin-out-secures-3-million-to-develop-long-duration-energy-storage/618739A team of Manchester scientists have secured €3 million investment to bring a lithium-free energy storage solution to the global market.

    ]]>
    A team of Manchester scientists have secured €3 million investment to bring a lithium-free energy storage solution to the global market.

    Long-term energy storage – or energy storage with a duration of at least ten hours – is key to supporting the low-carbon energy transition and security. It will enable electricity generated by renewables to be stored for longer, increasing the efficiency of these environmentally sustainable technologies and reducing dependency baseload imported gas and coal-fired power plants. It will also help drive the multi-billion global market which is, currently, inadequately served with current market-ready technologies.

    HalioGEN Power – a spin-out founded by The University of Manchester Professor and, with Research Associates Dr Lewis Le Fevre, Dr Andinet Aynalem, and Dr Athanasios Stergiou – has created a technology that has the potential to store energy and efficiently provide power without using critical raw materials.

    HalioGEN Power’s team have achieved this by developing a redox-flow battery technology that does not require the use of membrane. By eliminating the need for a membrane, this technology is one of the world’s first long-term storage solutions to negate the use of lithium. Instead, by manipulating the halogen chemistry, the team has been able to create a two-phase system, where the interface between the two phases acts as a membrane.

    Unlike current market-established technologies that use lithium metal and can only store energy efficiently for up to four hours, HalioGEN’s redox-flow batteries can store energy for more than ten hours.

    In addition, the HalioGEN Power technology requires just one tank and one pump, instead of two for conventional flow batteries. This not only reduces the capital cost of the system, but also reduces the complexity of the battery design.

    The new funding is provided by , The German Federal Agency for Disruptive Innovation, following the successful creation of a lab-based protype by the HalioGEN Power team. The prototype phase took place within the labs, using an initial €1 million investment, also provided by SPRIND.

    The €3 million seed funding will now be used to scale and de-risk this protype over the next 18 months, preparing its route for commercial application.

    During this 18-month lab-to-market acceleration period, HalioGEN Power will be based in the (GEIC) at The University of Manchester. The GEIC specialises in the commercialisation of new technologies using graphene and other 2D materials. As a GEIC partner, HalioGEN Power will be able to access its world-class facilities and resources, supported by a team of application engineers with broad experience in the development of novel products.

    Despite its infancy, HalioGEN Power has already received expressions of interest from various organisations from the UK and Europe, including energy suppliers and energy solution providers, keen to apply its technology and invest in future roll out.

    The HalioGEN Power project team will be led by the co-founders, who will each take key roles in the business structure. Dr Lewis Le Fevre will operate as Chief Technology Officer, Dr Andinet Aynalem as Principal Scientist, and Dr Athanasios Stergiou as Senior Scientist, with Professor Robert Dryfe overseeing all activity.

    Robert Dryfe, Professor of Physical Chemistry at The University of Manchester and HalioGEN Power’s co-founder explained: “Our goal is to bring to market a new, disruptive energy innovation that helps address global energy transition and security challenges, while also tackling geo-specific issues that threaten the stability of the grid, such as the so-called ‘dark lulls’ in Germany. These lulls see the country go for up to ten days without significant solar and wind energy generation.

    “Our redox-flow battery technology creates long-term storage to navigate issues like this in order to maximise the environmental and economic sustainability of renewable energy systems."

     As part of this development stage, SPRIND will provide financial support and mentorship. SPRIND is part of the German Federal Government and has been set up to support innovators from Germany and neighbouring countries, creating a space where they can take risks. 

    In addition, HalioGEN Power will receive ongoing support from the (the Agency), a unique collaboration between eight partners from the public, private and academic sectors in Greater 91ֱ (GM), tasked with accelerating carbon emission reductions and transitioning the GM city-region to a carbon-neutral economy by 2038 by connecting innovative low-carbon products and services to end-users

    The Agency will support HalioGEN Power in the further development of the business, business plan, and products, from Technology Readiness Levels (TRL) 4 to 7, throughout 2024 and 2025, sourcing and introducing potential end user customers and defining a clear route for the technology from prototype to market-ready.

    David Schiele, Director of The Energy Innovation Agency said: “The Agency is thrilled to be working with the HalioGEN Power team, and uniquely placed, to help them accelerate development of their innovative battery technology and business throughout 2024 and beyond, by offering access to business development support, and end-users, to support the energy transition with innovative products which make greater use of stored energy from clean renewable energy generation”.

    HalioGEN Power is the second spin-out co-created by Professor Robert Dryfe. He also co-founded Molymem, a breakthrough water filtration technology, which has already secured £1 million in investment to scale up its technology.   

    ]]>
    Thu, 25 Jan 2024 11:46:06 +0000 https://content.presspage.com/uploads/1369/1971f4b0-6a07-4d05-8053-9311a89914b0/500_haliogenpower.jpg?10000 https://content.presspage.com/uploads/1369/1971f4b0-6a07-4d05-8053-9311a89914b0/haliogenpower.jpg?10000
    91ֱ professors honoured in 2024 Blavatnik Awards for Young Scientists /about/news/manchester-professors-honoured-in-2024-blavatnik-awards-for-young-scientists/ /about/news/manchester-professors-honoured-in-2024-blavatnik-awards-for-young-scientists/617312Two University of Manchester professors have been recognised in the prestigious 2024 Blavatnik Awards for Young Scientists.

    ]]>
    Two University of Manchester professors have been recognised in the prestigious 2024 Blavatnik Awards for Young Scientists.

    Today, the and The announced the nine recipients of the 2024 Blavatnik Awards for Young Scientists in the UK, including three Laureates and six finalists.

    and are named among the three Laureates, who will each receive £100,000 in recognition of their work in Chemical Sciences and Physical Sciences & Engineering, respectively.

    Now in its seventh year, the awards are the largest unrestricted prizes available to UK scientists aged 42 or younger. The awards recognise research that is transforming medicine, technology and our understanding of the world.

    This year’s Laureates were selected by an independent jury of expert scientists from across the UK.

    Professor Anthony Green, a Lecturer in Organic Chemistry from The University of Manchester, has been named the Chemical Sciences Laureate for his discoveries in designing and engineering new enzymes, with valuable catalytic functions previously unknown in nature that address societal needs. Recent examples include the development of biocatalysts to produce COVID-19 therapies to break down plastics, and to use visible light to drive chemical reactions. 

    Rahul Nair, Professor of Materials Physics at The University of Manchester, was named Laureate in Physical Sciences & Engineering for developing novel membranes based on two-dimensional (2D) materials that will enable energy-efficient separation and filtration technologies. Using graphene and other 2D materials, his research aims to study the transport of water, organic molecules, and ions at the nanoscale, exploring its potential applications to address societal challenges, including water filtration and other separation technologies.

    Internationally recognised by the scientific community, the Blavatnik Awards for Young Scientists are instrumental in expanding the engagement and recognition of young scientists and provide the support and encouragement needed to drive scientific innovation for the next generation.

    , Founder and Chairman of Access Industries and Head of the Blavatnik Family Foundation, said: “Providing recognition and funding early in a scientist’s career can make the difference between discoveries that remain in the lab and those that make transformative scientific breakthroughs.

    “We are proud that the Awards have promoted both UK science and the careers of many brilliant young scientists and we look forward to their additional discoveries in the years ahead.”

    , President and CEO of The New York Academy of Sciences and Chair of the Awards’ Scientific Advisory Council, added: “From studying cancer to identifying water in far-off planets, to laying the groundwork for futuristic quantum communications systems, to making enzymes never seen before in a lab or in nature, this year’s Laureates and Finalists are pushing the boundaries of science and working to make the world a better place. Thank you to this year’s jury for sharing their time and expertise in selecting these daring and bold scientists as the winning Laureates and Finalists of the 2024 Blavatnik Awards for Young Scientists in the UK.”

    The 2024 Blavatnik Awards in the UK Laureates and Finalists will be honoured at a black-tie gala dinner and award ceremony at Banqueting House in Whitehall, London, on 27 February 2024.

    ]]>
    Wed, 17 Jan 2024 08:00:00 +0000 https://content.presspage.com/uploads/1369/f874206d-a98e-4afa-a8f3-aafc5e709857/500_bays2024-63.jpg?10000 https://content.presspage.com/uploads/1369/f874206d-a98e-4afa-a8f3-aafc5e709857/bays2024-63.jpg?10000
    Tata Steel, The Henry Royce Institute Sign MoU to set up a Centre for Innovation in Advanced Materials /about/news/tata-steel-the-henry-royce-institute-sign-mou-to-set-up-a-centre-for-innovation-in-advanced-materials/ /about/news/tata-steel-the-henry-royce-institute-sign-mou-to-set-up-a-centre-for-innovation-in-advanced-materials/614248Tata Steel has signed a Memorandum of Understanding (MoU) with The Henry Royce Institute for Advanced Materials, 91ֱ, UK, to set up a Centre for Innovation in Advanced Materials.

    ]]>
    Tata Steel has signed a Memorandum of Understanding (MoU) with The Henry Royce Institute for Advanced Materials, 91ֱ, UK, to set up a Centre for Innovation in Advanced Materials. The two entities are joining forces on a collaborative research and development programme which will see Tata Steel investing £10 million over four years. The Centre for Innovation will be set up at the Institute’s headquarters at the University of Manchester.

    The new Centre aims to link up on Advanced Materials with the broader UK innovation eco-system involving multiple universities, catapult centres and the National Health Service. The research programme will get the benefit of participation of leading academics and technologists of the broader eco-system through the partner network of the Henry Royce Institute.

    Tata Steel has a growing business in composites, graphene, and medical materials. The research programme at the Centre will not only focus on pushing the knowledge boundaries in these materials, but also explore 2D and second-life materials. Establishing recycling technologies for materials will be an integral part of materials development.

    T. V. Narendran, CEO & MD, Tata Steel, said: “The establishment of the Centre for Innovation in the UK represents a strategic move for Tata Steel towards harnessing the global technology and innovation ecosystem. The Centre at Royce will enable us to work with world-class scientists and a rich partner network to create sustainable, breakthrough, market-ready applications for the benefit of both the Company and the community. Tata Steel is committed to developing pioneering technologies and solutions for a better tomorrow."

    Dr Debashish Bhattacharjee, Vice President, Technology and R&D, Tata Steel, said: “We have set up Centres for Innovation in India in key areas like Mobility, Mining, Mineral Research, and Advanced Materials. The Centre for Innovation in Advanced Materials at Royce is one of the first of Tata Steel’s multiple global satellite R&D and Technology centres planned in key strategic areas. I am enthusiastic about this collaboration which aligns seamlessly with Tata Steel's pursuit of technology leadership and building future ready businesses by exploring opportunities in materials beyond steel.”

    Professor Dame Nancy Rothwell, President and Vice-Chancellor of The University of Manchester, said: “We are really pleased that Tata Steel is establishing this Centre for Innovation here in 91ֱ, truly leveraging our world-class expertise in advanced materials. Importantly, this excellent Centre will combine the capability of the University of Manchester’s leading materials researchers with the commercial expertise of Tata Steel and is set to deliver a very productive innovation-based relationship for both the University and the company.”

    Professor David Knowles, Royce CEO, said: “This important Royce collaboration with Tata Steel further underscores the opportunities for advanced materials and manufacturing both in the North West and across the UK – securing the experience and reach of a global player in materials manufacturing to further accelerate the translation of materials-based technologies to address challenges in health, sustainability and net-zero. Critically the Centre leverages on Royce’s national network of Partners to support a project which has a foot in the North West. We are looking forward to this programme building momentum for the region and feeding into a number of national supply chains supporting regional economic growth around the UK.”

    This collaboration aims to strengthen the existing robust relationship between the organisations, capitalising on Tata Steel's extensive expertise in technology translation and commercialisation, complemented by Royce's strengths in science and innovation within advanced materials. Additionally, this initiative will also enable the Royce Hub at 91ֱ to leverage their key Royce Partners which include the Universities of Cambridge and Sheffield, and Imperial College London under this MoU.

    ]]>
    Fri, 15 Dec 2023 12:37:45 +0000 https://content.presspage.com/uploads/1369/eb05a6c8-6752-45fe-8c4a-775146a2ffd5/500_l-rsirpetergregsonprofdamenancyrothwellprofdavidknowlessonalraghuvanshitvnarendran.jpg?10000 https://content.presspage.com/uploads/1369/eb05a6c8-6752-45fe-8c4a-775146a2ffd5/l-rsirpetergregsonprofdamenancyrothwellprofdavidknowlessonalraghuvanshitvnarendran.jpg?10000
    UK-India Workshop on Circularity of Critical Materials drives country collaboration /about/news/uk-india-workshop-on-circularity-of-critical-materials-drives-country-collaboration/ /about/news/uk-india-workshop-on-circularity-of-critical-materials-drives-country-collaboration/612226In November an important UK-India Industry-Academia scoping workshop on Circularity of Critical Metals, Minerals and Materials was hosted by the The University of Manchester and Henry Royce Institute.

    ]]>
    In November an important UK-India Industry-Academia scoping workshop on Circularity of Critical Metals, Minerals and Materials was hosted by the The University of Manchester and Henry Royce Institute.

    It was facilitated by both , at 91ֱ, in his role as Faculty Head of Internationalisation for India and Dr Laura Cohen, Royal Academy of Engineering’s (RAEng) Visiting Professor at Royce who is the former CEO of the British Ceramic Confederation (BCC).

    Critical metals such as copper, cobalt, gallium, indium, rare earth, and platinum group metals are the raw materials for low-carbon technologies such as wind mill generators, solar panels, batteries, magnets, and EV vehicles, and are critical in the development of low-carbon industries globally.

    The Critical Metals Industry includes mining, smelting, processing, and recycling, in which research and innovation plays an important role. UK and India face similar challenges in terms of building supply chain resilience in critical metals as both countries do not have very good sources of critical metals and minerals. They are largely dependent on a few countries for sourcing in their finished forms. There is recognition in both countries on the importance of building supply chain resilience in this area.

    Working Party

    The workshop saw discussions on future ways forward. There was particular interest identified from the Indian delegation in battery recycling (critical materials for anode cathode, electrolyte); magnets; novel battery technology; using less critical materials; design for end-of-life; photovoltaics; other sustainable materials, and waste streams from mining.

    Exploration of materials is a UK Foreign and Commonwealth Development Office (FCDO) – India priority.

    The November workshop follows an earlier  in Spring this year. This earlier meeting had mapped the India landscape to critical minerals strengths, challenges and opportunities for collaboration with the UK.

    Mr Sudhendu J. Sinha, Adviser, NITI Aayog (National Institution for Transforming India) who led the Indian delegation said, “Critical minerals is an important area of collaboration. It can possibly have focus on raising sensitivity through carefully crafted Awareness Programs, skill upgradation, technological collaboration, knowledge exchange and experience sharing and finally exploring Investment opportunities in the area of critical minerals between India and the UK. We sincerely hope this engagement to rise to meaningful and impactful levels. “

    Joshua Bamford, representing the FCOD and Head of Tech and Innovation at the British High Commission New Delhi said, “The UK and Indian governments recognise the strategic importance of securing a sustainable supply of critical materials as well as the need for innovation and investment in the recycling of critical materials in order to drive forward technological transformation and the transition to net zero.

    “This workshop has underscored the huge opportunities of continued collaboration between our governments, universities and industry to drive forward new innovations, share expertise and fast track new solutions to market.

    “The UK government looks forward to delivering the next steps of this exciting partnership to deliver tangible benefits to the UK and India.”

    Dr. Laura Cohen said, “This was a very positive workshop, which demonstrated the huge potential for both countries to work together to translate these priority themes into tangible projects. A good example was the strong interest from a number of Indian battery recycling companies in initial work with Royce/ 91ֱ in exploring titanium recycling for battery casing.  

    “Both the UK and India delegates were also keen to use the learning from the Royce  project, recognising the importance of ‘application scientists’ in establishing industry needs and connecting this to academic expertise.”

    Prof. Aravind Vijayaraghavan added, “It was a pleasure to work with FCDO and Royce to host this delegation in 91ֱ, where a clear and significant potential was evidenced for both countries to work together to promote the circularity of critical materials. We will look forward to translating these engagement into highly impactful projects and long-term collaborations, as well as to explore joint commercial opportunities in both countries.”

    The Workshop included interdisciplinary UK delegates from the Universities of Manchester, Brunel and Surrey, the Henry Royce Institute, FCDO, key Indian technology Institutes and laboratories, Innovate UK as well as a number of Indian businesses who have activities associated with rare metals.

    ]]>
    Tue, 28 Nov 2023 14:15:13 +0000 https://content.presspage.com/uploads/1369/7d8f7bc9-7719-4a11-8e99-9c8e1c8d9a0c/500_img-2438-2.png?10000 https://content.presspage.com/uploads/1369/7d8f7bc9-7719-4a11-8e99-9c8e1c8d9a0c/img-2438-2.png?10000
    Graphene spin-out wins The Spectator’s Innovator of the Year Award for Excellence in Sustainability /about/news/graphene-spin-out-wins-the-spectators-innovator-of-the-year-award-for-excellence-in-sustainability/ /about/news/graphene-spin-out-wins-the-spectators-innovator-of-the-year-award-for-excellence-in-sustainability/606126Graphene Innovations 91ֱ Ltd, founded by Dr Vivek Koncherry, has won The Spectator’s prestigious Excellence in Sustainability Award, in partnership with Investec

    ]]>
    In a momentous achievement for sustainable technology,  (GIM), founded by University of Manchester Alumnus, Dr Vivek Koncherry, has won The Spectator’s Innovator of the Year Award for Excellence in Sustainability, presented in partnership with Investec. 

    The prestigious award ceremony, held in London on November 9, recognised and celebrated outstanding British entrepreneurship, firmly establishing GIM as a leader in sustainability and innovation.

    The Innovator of the Year Awards, hosted by The Spectator, have become a hallmark in the UK's business and investment communities, attracting a growing number of entries each year. The award was well deserving of GIM's groundbreaking work in harnessing the power of graphene to drive sustainability and economic viability.

    Earlier this month, GIM, alongside Economic Innovator of the Year finalists, was featured in . The episode delved into their expertise in manufacturing and engineering, with GIM's contributions highlighted from 27:30.

    Graphene Innovations 91ֱ Ltd

    GIM design graphene-based compounds and production systems that allow partners to commercialise graphene-enhanced products at scale, unlocking competitive advantage, sustainability, and cost reduction. Notably, GIM's work in developing graphene-enhanced concrete stands out as a game-changer for the construction industry, where concrete production contributes 8% of global CO2 emissions.

    GIM Concrete, a pioneering product by the company, is a fusion of graphene, polymers, and additives. What makes it truly innovative is its manufacturing process, which eliminates 88% of CO2 emissions by abstain from the use of cement. Not only does it address environmental concerns, but GIM Concrete also boasts 4 times the compression strength of traditional concrete, is 30% lighter, and cures in a mere 2 to 4 hours, compared to the 28 days required for traditional concrete.

    The company has also developed a sustainable waste upcycling platform, utilising graphene as an additive to transform ground waste tires and plastics. This approach allows for the creation of high-quality, durable products through traditional manufacturing processes, optimising both performance and sustainability.

    Graphene Innovations 91ֱ Ltd was founded by Dr Vivek Koncherry, an alumnus, with their research and development centre located in The University of Manchester’s (GEIC). 

    Vivek expressed his delight saying: “We are honoured to receive the Excellence in Sustainability award and grateful for the supportive environment in 91ֱ's graphene ecosystem and the focus of The University of Manchester on this core area of social responsibility. This recognition exemplifies the collaborative efforts and transformative potential of graphene-based solutions. Personally, my time as a senior research fellow at The University of Manchester, combined with recognising the fundamental role of sustainability in the University’s ethos, inspired me to working with graphene and the GEIC.

    "From first proposing a graphene suitcase idea to recycling car tires into graphene floor mats, the journey has been very transformative with exciting future developments now taking place. With this recognition, GIM eagerly anticipates continuing its innovative journey, contributing to a sustainable future, and inspiring others to leverage the graphene ecosystem for positive impact."

    What is graphene, and its link to 91ֱ?

    If you've ever used a pencil, you've unwittingly engaged with graphene. Discovered in 2004 by 91ֱ-based researchers, Professor Andre Geim and Professor Kostya Novoselov, graphene is a one-atom-thick, two-dimensional crystal. Their pioneering work in isolating graphene from graphite earned them the Nobel Prize in Physics in 2010. Today, 91ֱ known as the home of graphene, remains a hub for graphene research and applications, and GIM stands as a shining example of the city's continued contribution to groundbreaking technological advancements.

    ]]>
    Fri, 10 Nov 2023 09:10:55 +0000 https://content.presspage.com/uploads/1369/cab82824-5f67-41c3-86f8-54cc149b3016/500_spectatorawardsvivekandjames.png?10000 https://content.presspage.com/uploads/1369/cab82824-5f67-41c3-86f8-54cc149b3016/spectatorawardsvivekandjames.png?10000
    University to train next generation of AI researchers in new UKRI Centre for Doctoral Training /about/news/university-to-train-next-generation-of-ai-researchers-in-new-ukri-centre-for-doctoral-training/ /about/news/university-to-train-next-generation-of-ai-researchers-in-new-ukri-centre-for-doctoral-training/603573The University of Manchester has been awarded funding for a new UKRI AI Centre for Doctoral Training in Decision Making for Complex Systems.

    ]]>
    The University of Manchester has been awarded funding for a new UKRI AI Centre for Doctoral Training in Decision Making for Complex Systems.

    The centre, led Dr Mauricio A Álvarez, will train the next generation of AI researchers to develop AI methods designed to accelerate new scientific discoveries – specifically in the fields of astronomy, engineering biology and material science.

    The University will be working in partnership with The University of Cambridge, and is one of 12 Centres for Doctoral Training (CDTs) in Artificial Intelligence (AI) based at 16 universities, announced by UK Research and Innovation (UKRI) today (31 October).

    The investment by UKRI aims to ensure that the UK continues to have the skills needed to seize the potential of the AI era, and to nurture the British tech talent that will push the AI revolution forwards. 

    £117 million in total has been awarded to the 12 CDTs and builds on the previous UKRI investment of £100 million in 2018.

    Doctoral students at The University of Manchester will be provided with a foundation in Machine Learning and AI and an in-depth understanding of the implications of its application to solve real-world problems.

    The programme will also cover the areas of responsible AI and equality, diversity and inclusion.

     

    Dr Mauricio A Álvarez, Senior Lecturer in Machine Learning at The University of Manchester, said: "We are delighted to be awarded funding for this new AI CDT. 91ֱ is investing heavily in AI research and translation, and the CDT will complement other significant efforts in research through our AI Fundamentals Centre at the University and innovation via the Turing Innovation Catalyst. Our partnership with Cambridge will also enable us to educate experts capable of generalising and translating nationally to stimulate the development and adoption of AI technology in high-potential, lower AI-maturity sectors.

    “Modern science depends on a variety of complex systems, both in terms of the facilities that we use and the processes that we model. AI has the potential to help us understand these systems better, as well as to make them more efficient.

    The AI methods we will develop will apply to a wide range of challenges in complex systems, from transport systems to sports teams. We are partnering with a diverse pool of industry collaborators to address these challenges jointly."

    Dr Julia Handl, Professor in Decision Sciences at The University of Manchester, said: “This CDT is a fantastic opportunity to bring together researchers from a wide spectrum of disciplines, from across all three of Manchester’s Faculties, to ensure we can develop innovative solutions that are appropriate to the complexity and uncertainty of real-world systems. The involvement of the Faculty of Humanities is crucial in ensuring such systems are effective and inclusive in supporting human decision makers, and in delivering the centre’s cross-cutting theme of increasing business productivity, supported by collaboration with the Productivity Institute, the Masood Enterprise Centre and a range of industry partners.”

    UKRI Chief Executive, Professor Dame Ottoline Leyser, said: “The UK is in a strong position to harness the power of AI to transform many aspects of our lives for the better. Crucial to this endeavour is nurturing the talented people and teams we need to apply AI to a broad spectrum of challenges, from healthy aging to sustainable agriculture, ensuring its responsible and trustworthy adoption. UKRI is investing £117 million in Centres for Doctoral Training to develop the talented researchers and innovators we need for success.”

    Dr Kedar Pandya, Executive Director, Cross-Council Programmes at UKRI, said: “This £117 million investment, will involve multiple business and institutional partners for the Centres of Doctoral Training. These include well-known brands such as IBM, Astra Zeneca, and Google, as well as small to medium sized enterprises that are innovating in the AI field. A further £110 million has been leveraged from all partners in the form of cash or in-kind contributions such as use of facilities, resources or expertise.”

    The first cohort of UKRI AI CDT students will start in the 2024/2025 academic year, recruitment for which will begin shortly.

    ]]>
    Tue, 31 Oct 2023 14:28:23 +0000 https://content.presspage.com/uploads/1369/9ac6001d-397b-479d-95d5-9ba709c70eee/500_web-3963945-1280.jpg?10000 https://content.presspage.com/uploads/1369/9ac6001d-397b-479d-95d5-9ba709c70eee/web-3963945-1280.jpg?10000
    Sustainable fashion and sportswear must be high on the political agenda /about/news/sustainable-fashion-and-sportswear-must-be-high-on-the-political-agenda/ /about/news/sustainable-fashion-and-sportswear-must-be-high-on-the-political-agenda/601850Three University of Manchester academics who specialise in fashion and textiles have criticised the Government for failing to take action to boost sustainability in the UK fashion and sportswear industries.

    ]]>
    Three University of Manchester academics who specialise in fashion and textiles have criticised the Government for failing to take action to boost sustainability in the UK fashion and sportswear industries.

    In an article published by the University’s policy engagement unit Policy@91ֱ to coincide with the 20th annual Recycle Week, Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon highlight that, of the one million tonnes of textiles disposed of every year in this country, 300,000 tonnes end up in landfill or incineration with figures suggesting 10 per cent of global CO2 emissions may come from the fashion industry. 

    And they warn that the damage inflicted by discarded sportswear is often overlooked, “despite an over-reliance on polyester garments, which are harmful to the environment as the fabric releases microfibres and takes hundreds of years to fully biodegrade.”

    Pressdee, Benstead and Conlon stress the importance of establishing “sustainable behaviour throughout the supply chain” and praise the European Commission for proposing an “extended producer responsibility (EPR)” for textiles in the EU which “aims to create appropriate incentives to encourage producers to design products that have a reduced environmental impact at the end of their life.”

    This contrasts with the UK where, they argue, “tackling sustainability in the fashion industry has lost its place on the political agenda.”

    The University of Manchester academics contend that there has beendisappointing lack of progress from the UK Government” following the House of Commons Environmental Audit Committee’s Fixing Fashion report in 2019.

    They continue: “This report included a call for the use of EPR as well as other important recommendations such as a ban on incinerating or landfilling unsold stock that can be reused or recycled and a tax system that shifts the balance of incentives in favour of reuse, repair and recycling to support responsible companies. We urge the Government to think again and drive forward the Committee’s recommendations in order to put sustainable fashion back on the political agenda.”

    Pressdee, Benstead and Conlon also criticise Ministers for abolishing the standalone GCSE in textiles which provided many young people with the ability to mend clothing such as football kits instead of throwing them away.

    They write: “We are therefore calling on the Government to reintroduce textiles as part of the school curriculum to engage young people in sustainable materials and equip them with the basic skills required to repair clothes.”

    The University of Manchester has launched a new project dedicated to tackling the impact of textile waste in the football industry through the provision of workshops tasked with transforming surplus football shirts into unique reusable tote bags, whilst educating local communities on the environmental impacts of textile waste and how to extend the life of garments. The initiative aims to provide a fun, responsible way to keep kits in circulation while shining a light on the problem.

    Game changers, a new approach to tackling sportswear garment waste’ by Lindsay Pressdee, Dr Amy Benstead and Dr Jo Conlon is available to read on the

    ]]>
    Thu, 19 Oct 2023 15:11:00 +0100 https://content.presspage.com/uploads/1369/5656122a-3b74-481d-8e50-099611adf2a1/500_footballkits.jpg?10000 https://content.presspage.com/uploads/1369/5656122a-3b74-481d-8e50-099611adf2a1/footballkits.jpg?10000
    91ֱ-Aveiro collaboration to explore next generation biomedical implants /about/news/manchester-aveiro-collaboration-to-explore-next-generation-biomedical-implants/ /about/news/manchester-aveiro-collaboration-to-explore-next-generation-biomedical-implants/591891A new collaboration between The University of Manchester and CICECO-Aveiro Institute of Materials will transform the field of biomedical implants.  

    ]]>
    A new collaboration between The University of Manchester and CICECO-Aveiro Institute of Materials will transform the field of biomedical implants.  

    The University of Manchester’s Dr Beatriz Mingo – RAEng Engineers Trust Young Engineer of the Year 2022 – will collaborate with Dr Isabel Sousa from CICERO-Aveiro Institute of Materials – the best ranked materials science research unit in Portugal (Portuguese Science Foundation) – to develop a technology that has the potential to serve as the foundation for the next generation of biomedical implants with enhanced properties. 

    Biodegradable materials for orthopaedic implants, such as screws, nails, or staples are of increasing clinical interest due to their ability to dissolve naturally after the bone has healed. This removes the need for additional surgical interventions to remove the implant, and the risk of further complication that this can cause. 

    Magnesium, with its bone-like density and biocompatibility, is considered the ideal material. However, its rate of degradation is extremely high and currently does not last the complete bone healing period.  

    The new project, funded by the Royal Society and starting this September, Dr Mingo and Dr Sousa aim to create a solution by developing a smart multilayer coating for magnesium substrates, in which each layer offers a specific functionality.  

    The ceramic layer increases the implant life, matching the rate of biodegradation to that of the bone healing time; while the organic top-coat loaded with encapsulated antibiotics, simultaneously releases antibiotic molecules in-situ where infections are most likely to occur.  

    Dr Beatriz Mingo, Senior Lecturer and Royal Academy of Engineering Fellow at The University of Manchester, explains: “Our proposed technology has the potential to provide a foundation that transforms the future use of biomedical implants, creating an application that both optimises the healing process through the release of antibiotics, while eradicating the need for follow up surgeries – an additional risk of infection – to remove the implants. This will positively impact society by providing shorter treatment times for patients while relieving the financial burden of the NHS.” 

    The research grant is part of Royal Society initiative to stimulate international collaborations with leading scientists.  As part of the grant, Dr Mingo’s group members will visit the Univeristy of Aveiro to develop biodegradable gelatine capsules containing antibiotic agents and Dr Sousa will visit 91ֱ to incorporate these particles into coatings formed on magnesium based components. 

    Dr Beatriz Mingo is a materials  scientist at The University of Manchester, whose research focuses on environmentally friendly surface treatments for light alloys.  

    In addition to this project announced today, she is also developing high-performance smart materials that can release corrosion inhibitors in response to the change in pH that accompanies the start of the corrosion process. Her research could extend the lifetime of lightweight components used in transport, which will help to create energy-efficient vehicles and support sustainable consumption of resources.  

    is one of The University of Manchester’s - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest challenges facing the planet. #ResearchBeacons 

    ]]>
    Mon, 25 Sep 2023 12:33:19 +0100 https://content.presspage.com/uploads/1369/6806f4e0-d174-4c08-85ac-bd6a0f7ca63f/500_crystalvioletlactonemelamineformaldehydecapsules.jpg?10000 https://content.presspage.com/uploads/1369/6806f4e0-d174-4c08-85ac-bd6a0f7ca63f/crystalvioletlactonemelamineformaldehydecapsules.jpg?10000
    Peering into nanofluidic mysteries one photon at a time /about/news/peering-into-nanofluidic-mysteries-one-photon-at-a-time/ /about/news/peering-into-nanofluidic-mysteries-one-photon-at-a-time/587673Researchers at University of Manchester and the École polytechnique fédérale de Lausanne (EPFL), Switzerland, have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.

    ]]>
    Researchers at University of Manchester and the École polytechnique fédérale de Lausanne (EPFL), Switzerland, have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.

    Nanofluidics, the study of fluids confined within ultra-small spaces, offers insights into the behaviour of liquids on a nanometer scale. However, exploring the movement of individual molecules in such confined environments has been challenging due to the limitations of conventional microscopy techniques. This obstacle prevented real-time sensing and imaging, leaving significant gaps in our knowledge of molecular properties in confinement.

    A team led by Professor Radha Boya in the Department of Physics at The University of Manchester makes nanochannels which are only one-atom to few-atom thin using two-dimensional materials as building blocks.

    Prof Boya said: “Seeing is believing, but it is not easy to see confinement effects at this scale. We make these extremely thin slit-like channels, and the current study shows an elegant way to visualise them by super-resolution microscopy.”

    The study's findings are published in the journal .

    The partnership with the EPFL team allowed for optical probing of these systems, uncovering hints of liquid ordering induced by confinement.

    Thanks to an unexpected property of boron nitride, a graphene-like 2D material which possesses a remarkable ability to emit light when in contact with liquids, researchers at EPFL's Laboratory of Nanoscale Biology (LBEN) have succeeded in directly observing and tracing the paths of individual molecules within nanofluidic structures.

    This revelation opens the door to a deeper understanding of the behaviours of ions and molecules in conditions that mimic biological systems.

    Professor Aleksandra Radenovic, head of LBEN, explains: "Advancements in fabrication and material science have empowered us to control fluidic and ionic transport on the nanoscale. Yet, our understanding of nanofluidic systems remained limited, as conventional light microscopy couldn't penetrate structures below the diffraction limit. Our research now shines a light on nanofluidics, offering insights into a realm that was largely uncharted until now."

    This newfound understanding of molecular properties has exciting applications, including the potential to directly image emerging nanofluidic systems, where liquids exhibit unconventional behaviours under pressure or voltage stimuli.

    The research's core lies in the fluorescence originating from single-photon emitters at the hexagonal boron nitride's surface.

    Doctoral student Nathan Ronceray, from LBEN, said: “This fluorescence activation came unexpected as neither hexagonal boron nitride (hBN) nor the liquid exhibit visible-range fluorescence on their own. It most likely arises from molecules interacting with surface defects on the hBN crystal, but we are still not certain of the exact mechanism,”

    Dr Yi You, a post-doc from The University of Manchester engineered the nanochannels such that the confining liquids mere nanometers from the hBN surface which has some defects.

    Surface defects can be missing atoms in the crystalline structure, whose properties differ from the original material, granting them the ability to emit light when they interact with certain molecules.

    The researchers further observed that when a defect turns off, one of its neighbours lights up, because the molecule bound to the first site hopped to the second. Step by step, this enables reconstructing entire molecular trajectories.

    Using a combination of microscopy techniques, the team monitored colour changes to successfully demonstrate that these light emitters emit photons one at a time, offering pinpoint information about their immediate surroundings within around one nanometer. This breakthrough enables the use of these emitters as nanoscale probes, shedding light on the arrangement of molecules within confined nanometre spaces.

    The potential for this discovery is far-reaching. Nathan Ronceray envisions applications beyond passive sensing.

    He said: “We have primarily been watching the behaviour of molecules with hBN without actively interacting with, but we think it could be used to visualize nanoscale flows caused by pressure or electric fields.

    “This could lead to more dynamic applications in the future for optical imaging and sensing, providing unprecedented insights into the intricate behaviours of molecules within these confined spaces.”

    The project received funding from the European Research Council, Royal Society University Research Fellowship, Royal Society International Exchanges Award and EPSRC New Horizons grant.

    ]]>
    Thu, 31 Aug 2023 16:04:08 +0100 https://content.presspage.com/uploads/1369/dabf92c4-c38c-4ac8-92bf-a389dd9256df/500_credittotitouanveuilletandepfl.jpg?10000 https://content.presspage.com/uploads/1369/dabf92c4-c38c-4ac8-92bf-a389dd9256df/credittotitouanveuilletandepfl.jpg?10000
    91ֱ research to boost bioprinting technology to address critical health challenges in space /about/news/manchester-research-to-boost-bioprinting-technology-to-address-critical-health-challenges-in-space/ /about/news/manchester-research-to-boost-bioprinting-technology-to-address-critical-health-challenges-in-space/585603New research by The University of Manchester will enhance the power of bioprinting technology, opening doors to transform advances in medicine and addressing critical health challenges faced by astronauts during space missions.

    ]]>
    New research by The University of Manchester will enhance the power of bioprinting technology, opening doors to transform advances in medicine and addressing critical health challenges faced by astronauts during space missions.

    Bioprinting involves using specialised 3D printers to print living cells creating new skin, bone, tissue or organs for transplantation.

    The technique has the potential to revolutionise medicine, and specifically in the realm of space travel, bioprinting could have a significant impact.

    Astronauts on extended space missions have an increased health risk due to the absence of gravity and exposure to radiation. This makes them susceptible to diseases such as osteoporosis caused by loss of bone density and can cause injuries, such as fractures, which currently can’t be treated in space.

    By harnessing bioprinting capabilities in space, researchers aim to protect the health of space explorers.

    Currently, bioprinting machines rely on Earth’s gravity to function effectively. The new research by The University of Manchester, funded by a £200,000 grant from the UK Space Agency and supported by the European Space Agency, seeks to understand how to optimise the bioprinting process for conditions experienced in space, such as lack of gravity.

    Dr Marco Domingos, Senior Lecturer in Mechanical and Aeronautical Engineering at The University of Manchester, said: “This project marks a significant leap forward in bioprinting technology and by addressing the challenges posed by microgravity, we are paving the way for remarkable advancements in medicine and space exploration.”

    Libby Moxon, Exploration Science Officer for Lunar and Microgravity, added: “The University of Manchester’s pioneering project investigating a novel approach for bioprinting in space will help strengthen the UK’s leadership in the areas of fluid mechanics, soft matter physics and biomaterials, and could help protect the health of astronauts exploring space around the Earth, Moon and beyond.

    “We’re backing technology and capabilities that support ambitious space exploration missions to benefit the global space community, and we look forward to following this bioprinting research as it evolves.”

    Eventually, the team, including Dr Domingos, Prof Anne Juel and Dr Igor Chernyavsky, will take their findings to a bioprinting station being developed on board the International Space Station, which will allow researchers to print models in space and study the effects of radiation and microgravity.

    Dr Domingos said: “The first challenge is figuring out how to print anything where there is no gravity. There are few facilities in the UK that are suitable to study the bioprinting process within an environment that matches that of space – they are either too small, or the time in which microgravity conditions are applies are too short. Hence, it is important to print in space to advance our knowledge in this field.

    “By combining the principles of physics with bioprinting at The University of Manchester, we hope to come up with a solution before taking it to the International Space Station for testing.”

    The project will take place over two years at the Bioprinting Technology Platform based at the Henry Royce Institute on The University of Manchester’s campus.

    It hopes to develop beyond the challenge of microgravity to address further challenges of preserving, transporting and processing cells in space.

    ]]>
    Thu, 24 Aug 2023 11:57:55 +0100 https://content.presspage.com/uploads/1369/b02e6824-20a5-4ea9-bcaa-04cd74961710/500_3dbioprinters.jpg?10000 https://content.presspage.com/uploads/1369/b02e6824-20a5-4ea9-bcaa-04cd74961710/3dbioprinters.jpg?10000
    Graphene discovery could help generate cheaper and more sustainable hydrogen /about/news/graphene-more-magic-starts-when-flatness-ends/ /about/news/graphene-more-magic-starts-when-flatness-ends/584677Researchers from The University of Manchester and the University of Warwick finally solved the long-standing puzzle of why graphene is so much more permeable to protons than expected by theory.

    ]]>
    Researchers from The University of Manchester and the University of Warwick finally solved the long-standing puzzle of why graphene is so much more permeable to protons than expected by theory.

    A decade ago, scientists at The University of Manchester demonstrated that graphene is permeable to protons, nuclei of hydrogen atoms. The unexpected result started a debate in the community because theory predicted that it would take billions of years for a proton to permeate through graphene’s dense crystalline structure. This had led to suggestions that protons permeate not through the crystal lattice itself, but through the pinholes in its structure.

    Now, writing in , a collaboration between the University of Warwick, led by Prof Patrick Unwin, and The University of Manchester, led by Dr Marcelo Lozada-Hidalgo and Prof Andre Geim, report ultra-high spatial resolution measurements of proton transport through graphene and prove that perfect graphene crystals are permeable to protons. Unexpectedly, protons are strongly accelerated around nanoscale wrinkles and ripples in the crystal.

    The discovery has the potential to accelerate the hydrogen economy. Expensive catalysts and membranes, sometimes with significant environmental footprint, currently used to generate and utilise hydrogen could be replaced with more sustainable 2D crystals, reducing carbon emissions, and contributing to Net Zero through the generation of green hydrogen.

    The team used a technique known as to measure minute proton currents collected from nanometre-sized areas. This allowed the researchers to visualise the spatial distribution of proton currents through graphene membranes. If proton transport took place through holes as some scientists speculated, the currents would be concentrated in a few isolated spots. No such isolated spots were found, which ruled out the presence of holes in the graphene membranes.

    Drs Segun Wahab and Enrico Daviddi, leading authors of the paper, commented: “We were surprised to see absolutely no defects in the graphene crystals. Our results provide microscopic proof that graphene is intrinsically permeable to protons.”

    Unexpectedly, the proton currents were found to be accelerated around nanometre-sized wrinkles in the crystals. The scientists found that this arises because the wrinkles effectively ‘stretch’ the graphene lattice, thus providing a larger space for protons to permeate through the pristine crystal lattice. This observation now reconciles the experiment and theory.

    Dr Lozada-Hidalgo said: “We are effectively stretching an atomic scale mesh and observing a higher current through the stretched interatomic spaces in this mesh – mind-boggling.”

    Prof Unwin commented: “These results showcase SECCM, developed in our lab, as a powerful technique to obtain microscopic insights into electrochemical interfaces, which opens up exciting possibilities for the design of next-generation membranes and separators involving protons.”

    The authors are excited about the potential of this discovery to enable new hydrogen-based technologies.

    Dr Lozada-Hidalgo said, "Exploiting the catalytic activity of ripples and wrinkles in 2D crystals is a fundamentally new way to accelerate ion transport and chemical reactions. This could lead to the development of low-cost catalysts for hydrogen-related technologies."

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. 

    ]]>
    Wed, 23 Aug 2023 16:00:00 +0100 https://content.presspage.com/uploads/1369/5738e765-3e3e-4ff7-b2a5-e3cbdf0f64f1/500_graphene.png?10000 https://content.presspage.com/uploads/1369/5738e765-3e3e-4ff7-b2a5-e3cbdf0f64f1/graphene.png?10000
    91ֱ academics tackle “hidden problem” of textile waste in the football industry /about/news/manchester-academics-tackle-hidden-problem-of-textile-waste-in-the-football-industry/ /about/news/manchester-academics-tackle-hidden-problem-of-textile-waste-in-the-football-industry/582542A new partnership dedicated to tackling the impact of textile waste in the football industry has been launched between The University of Manchester and RÆBURN Design – a leading sustainable fashion studio.  

    ]]>
    A new partnership dedicated to tackling the impact of textile waste in the football industry has been launched between The University of Manchester and RÆBURN Design – a leading sustainable fashion studio.  

    The UK disposes of one million tonnes of textiles every year, 300,000 tonnes of which end up in landfill or incineration. Some figures suggest 10% of global CO2 emissions come from the fashion industry. 

    The football sector is a huge contributor to this - approximately 2.45 million Liverpool and 1.95 million 91ֱ United sports shirts were sold worldwide in 2021 alone. 

    The new project, KIT:BAG by RÆBURN, will work with local sportswear suppliers and the local community transform surplus football shirts into unique reusable tote bags, while educating them of the environmental impacts of textile waste and how we can extend the life of our garments. 

    It aims to provide a fun, responsible way to keep kits in circulation while shining a light on the large-scale problem in the industry. 

    Lindsay Pressdee, Senior Lecturer in Sustainable Fashion Marketing & Branding Communication at The University of Manchester, said: “Developing meaningful sustainable business models and consumer behaviours remains a key issue within the fashion sector and raises serious environmental concerns.  

    “This project focuses on the overlooked area of sportswear; how we can extend the life of these polyester garments and avoid them going into landfill or incineration, through the key principle of community education. 

    “The initiative aligns with The University of Manchester's objectives of promoting sustainability and social responsibility and by collaborating with Raeburn Design, which follows the REMADE sustainable ethos, we have an excellent opportunity to raise awareness and address this issue.” 

    Christopher Raeburn, Creative Director at RÆBURN, added: “As our business has evolved, we’ve tried, tested and proven our “Remade, Reduced, Recycled” motif can be scaled and translated into other industries outside of fashion, such as architecture, furniture design, film and cultural placemaking. 

    “KIT:BAG by RAEBURN marks our newest venture: bringing circular design solutions to the sports industry. We’re excited to have the University of Manchester on board as our research partner for this project. Together, we’ve set out a roadmap and a masterplan, now we’re inviting industry leaders to join us on this journey.” 

    While many solutions are emerging to tackle the problem of sustainable fashion, the size of the problem relating to official sportswear remains unknown.  

    As research partners, academics from the Department of Materials at The University of Manchester will focus on advancing current knowledge and generating new knowledge in this area. The researchers, including Lindsay Pressdee, Dr Amy Benstead,  Dr Jo Conlon and student intern Lena Bartoszewicz, will look at post-consumer waste, diverting it from landfill and repurposing it into a new usable product - a key part of the circular design model. 

    Lindsay added: “The waste of sportwear is a hidden problem – we know that football teams can have on average three kits per season, but we do not know how many people have in their homes, shoved in their wardrobes, or put away in their lofts.  

    “The problem requires a multifaceted approach and any change requires collaboration with consumers, sports clubs, garment recycling schemes, sports brands and producers. 

    “It is difficult to distinguish who is responsible, so we must consider both the sustainable production and consumption of products – a key principle of which is education.” 

    KIT:BAG by RÆBURN will launch on Thursday, 27 July with a party at The Lab E20 – Raeburn’s creative workspace in London. This will be followed by a community event for children and families on Saturday, 29 July.  

    The team plan to extend this to 91ֱ, where they will invite the local community to various workshops and have a go at making their own reusable bags.

     

    ]]>
    Wed, 26 Jul 2023 15:07:05 +0100 https://content.presspage.com/uploads/1369/fa75626a-170f-4715-b3f0-8b01bb7fb15e/500_kitbagmain.jpg?21555 https://content.presspage.com/uploads/1369/fa75626a-170f-4715-b3f0-8b01bb7fb15e/kitbagmain.jpg?21555
    91ֱ scientists caught Hofstadter’s butterfly in one of the most ancient materials on Earth /about/news/manchester-scientists-caught-hofstadters-butterfly-in-one-of-the-most-ancient-materials-on-earth/ /about/news/manchester-scientists-caught-hofstadters-butterfly-in-one-of-the-most-ancient-materials-on-earth/581833A team of researchers from The University of Manchesterhave revisited in a study published in one of the most ancient materials on Earth – graphite, and discovered new physics that has eluded the field for decades.

    ]]>
    Researchers in the at The University of Manchester have revisited one of the most ancient materials on Earth – graphite, and discovered new physics that has eluded the field for decades.

    Despite being made entirely of layers of carbon atoms arranged in a honeycomb pattern, natural graphite is not as simple as one may think. The manner in which these atomic layers stack on top of one another can result in different types of graphite, characterised by different stacking order of consecutive atomic planes.   The majority of naturally appearing graphite has hexagonal stacking, making it one of the most “ordinary” materials on Earth. The structure of graphite crystal is a repetitive pattern. This pattern gets disrupted at the surface of the crystal and leads to what's called 'surface states', which are like waves that slowly fade away as you go deeper into the crystal. But how surface states can be tuned in graphite, was not well understood yet.

    Van der Waals technology and twistronics (stacking two 2D crystals at a twist angle to tune the properties of the resulting structure to a great extent, because of moiré pattern formed at their interface) are the two leading fields in 2D materials research. Now, the team of NGI researchers, led by Prof. Artem Mishchenko, employs moiré pattern to tune the surface states of graphite, reminiscent of a kaleidoscope with everchanging pictures as one rotates the lens, revealing the extraordinary new physics behind graphite.

    In particular, Prof. Mishchenko expanded twistronics technique to three-dimensional graphite and found that moiré potential does not just modify the surface states of graphite, but also affects the electronic spectrum of the entire bulk of graphite crystal. Much like the well-known story of The Princess and The Pea, the princess felt the pea right through the twenty mattresses and the twenty eider-down beds. In the case of graphite, the moiré potential at an aligned interface could penetrate through more than 40 atomic graphitic layers.

    This research, published in the latest issue of , studied the effects of moiré patterns in bulk hexagonal graphite generated by crystallographic alignment with hexagonal boron nitride. The most fascinating result is the observation of a 2.5-dimensional mixing of the surface and bulk states in graphite, which manifests itself in a new type of fractal quantum Hall effect – a 2.5D Hofstadter’s butterfly.

    Prof. Artem Mishchenko at The University of Manchester, who has already discovered the said: “Graphite gave rise to the celebrated graphene, but people normally are not interested in this ‘old’ material. And now, even with our accumulated knowledge on graphite of different stacking and alignment orders in the past years, we still found graphite a very attractive system – so much yet to be explored”. Ciaran Mullan, one of the leading authors of the paper, added: “Our work opens up new possibilities for controlling electronic properties by twistronics not only in 2D but also in 3D materials”.

    Prof. Vladimir Fal’ko, Director of the National Graphene Institute and theoretical physicist at the Department of Physics and Astronomy, added: “The unusual 2.5D quantum Hall effect in graphite arises as the interplay between two quantum physics textbook phenomena – Landau quantisation in strong magnetic fields and quantum confinement, leading to yet another new type of quantum effect”.

    The same team is now carrying on with the graphite research to gain a better understanding of this surprisingly interesting material.

     

    Image credit: Prof. Jun Yin (co-author of the paper) 

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

    ]]>
    Thu, 20 Jul 2023 12:24:28 +0100 https://content.presspage.com/uploads/1369/ee78b64d-450a-47dc-93a2-6983e93ccd56/500_graphitebutterfly.jpg?10000 https://content.presspage.com/uploads/1369/ee78b64d-450a-47dc-93a2-6983e93ccd56/graphitebutterfly.jpg?10000
    Experiments reveal water can "talk" to electrons in graphene /about/news/experiments-reveal-water-can-talk-to-electrons-in-graphene/ /about/news/experiments-reveal-water-can-talk-to-electrons-in-graphene/578618An international team of researchers from The University of Manchester, the Max Planck Institute for Polymer Research of Mainz (Germany), and the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), reports in a study published in that water can interact directly with the carbon’s electrons: a quantum phenomenon that is very unusual in fluid dynamics.

    ]]>
     For the last 20 years, scientists have been puzzled by how water behaves near carbon surfaces. It may flow much faster than expected from conventional flow theories or form strange arrangements such as square ice. Now, an international team of researchers from The University of Manchester, the Max Planck Institute for Polymer Research of Mainz (Germany), and the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), reports in a study published recently in that water can interact directly with the carbon’s electrons: a quantum phenomenon that is very unusual in fluid dynamics. The results of this research could lead to applications in water purification and desalination processes and maybe even to liquid-based computers. 

    A liquid, such as water, is made up of small molecules that randomly move and constantly collide with each other. A solid, in contrast, is made of neatly arranged atoms that bathe in a cloud of electrons. The solid and the liquid worlds are assumed to interact only through collisions of the liquid molecules with the solid’s atoms: the liquid molecules do not “see” the solid’s electrons. Nevertheless, just over a year ago, a paradigm-shifting theoretical study proposed that at the water-carbon interface, the liquid’s molecules and the solid’s electrons push and pull on each other, slowing down the liquid flow: this new effect was called quantum friction. However, the theoretical proposal lacked experimental verification. 

    “We have now used lasers to see quantum friction at work,” explains study lead author Dr Nikita Kavokine. The team studied a sample of – a single monolayer of carbon atoms arranged in a honeycomb pattern. They used ultrashort red laser pulses (with a duration of only a millionth of a billionth of a second) to instantaneously heat up the graphene’s electron cloud. They then monitored its cooling with terahertz laser pulses, which are sensitive to the temperature of the graphene electrons. This technique is called optical pump–terahertz probe (OPTP) spectroscopy. 

    To their surprise, the electron cloud cooled faster when the graphene was immersed in water while immersing the graphene in ethanol made no difference to the cooling rate. “This was yet another indication that the water-carbon couple is somehow special, but we still had to understand what exactly was going on,” Kavokine says. A possible explanation was that the hot electrons push and pull on the water molecules to release some of their heat: in other words, they cool through quantum friction. The researchers delved into the theory, and indeed: water-graphene quantum friction could explain the experimental data. 

    "It's fascinating to see that the carrier dynamics of graphene keep surprising us with unexpected mechanisms, this time involving solid-liquid interactions with molecules none other than the omnipresent water," comments Prof Klaas-Jan Tielrooij. What makes water special here is that its vibrations, called hydrons, are in sync with the vibrations of the graphene electrons, called plasmons, so that the graphene-water heat transfer is enhanced through an effect known as resonance. “It is impressive that quantum phenomena usually occurring in solids appear in what would be considered a classical liquid as water” adds , Senior Lecturer at the University of Manchester. 

    The experiments thus confirm the basic mechanism of solid-liquid quantum friction. This will have implications for filtration and desalination processes, in which quantum friction could be used to tune the permeation properties of the nanoporous membranes. “Our findings are not only interesting for physicists, but they also hold potential implications for electrocatalysis and photocatalysis at the solid-liquid interface," says Xiaoqing Yu, PhD student at the Max Planck Institute in Mainz and first author of the work. 

    The discovery was down to bringing together an experimental system, a measurement tool and a theoretical framework that seldom go hand in hand. The key challenge is now to gain control over the water-electron interaction. “Our goal is to be able to switch quantum friction on and off on demand,” Kavokine says. “This way, we could design smarter water filtration processes, or perhaps even fluid-based computers.” 

     

    Pictured above: Water-graphene quantum friction (Credits: Lucy Reading-Ikkanda / Simons Foundation) 

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

    ]]>
    Mon, 26 Jun 2023 10:53:27 +0100 https://content.presspage.com/uploads/1369/6333e2a0-fdb0-4737-9406-fb6a7d383443/500_quantumfriction.jpg?10000 https://content.presspage.com/uploads/1369/6333e2a0-fdb0-4737-9406-fb6a7d383443/quantumfriction.jpg?10000
    Professor Allan Matthews elected as Fellow of the Royal Society /about/news/professor-allan-matthews-elected-as-fellow-of-the-royal-society/ /about/news/professor-allan-matthews-elected-as-fellow-of-the-royal-society/576242Professor Allan Matthews, University of Manchester Professor of Surface Engineering and Tribology, has been elected as a Fellow of the Royal Society for his substantial contribution to the advancement of science.

    ]]>

    Professor Allan Matthews, The University of Manchester Professor of Surface Engineering and Tribology in the , and affiliated to the , has been elected as a Fellow of the Royal Society for his substantial contribution to the advancement of science.

    The Royal Society said that Prof Matthews' ground-breaking research into surface engineering has been “agenda-setting, prolific and pivotal since the 1980s".

    He joins eighty outstanding researchers, innovators and communicators from around the world who have been elected as the newest Fellows of the Royal Society, the UK’s national academy of sciences and the oldest science academy in continuous existence.

    Allan join the ranks of Stephen Hawking, Isaac Newton, Charles Darwin, Albert Einstein, Lise Meitner, Subrahmanyan Chandrasekhar and Dorothy Hodgkin.

    Professor Philip Withers, Chief Scientist, Henry Royce Institute said:

    "I am delighted that Allan has been elected a Fellow.  His work on the development and fundamental understanding of advanced coatings, particularly for materials and components operating under demanding environments is world leading academically as well as being of great industrial impact.

    "Coatings are a key focus area for the Henry Royce Institute and Allan is moving the selection of appropriate coatings from a post-production sticking plaster art-form to a systematic and digitised process that is integral to the whole product design process."

     

    Sir Adrian Smith, President of the Royal Society said: 

    “I am delighted to welcome our newest cohort of Fellows.

    "These individuals have pushed forward the boundaries of their respective fields and had a beneficial influence on the world beyond.

    “This year’s intake have already achieved incredible things, and I have no doubt that they will continue to do so. I look forward to meeting them and following their contributions in future.”

     

    Professor Allan Matthews is a Fellow of the Royal Academy of Engineering. He is Professor of Surface Engineering and Tribology in the Department of Materials and Director of the EPSRC NetworkPlus in Digitalised Surface Manufacturing. Until June 2020, he served a four-year term as Director of the BP International Centre for Advanced Materials (ICAM). He spent his early career in the UK aerospace industry with Hawker Siddeley Dynamics, then British Aerospace Dynamics Group, before returning to academia and completing a PhD at the University of Salford in advanced plasma-based coating processes for the deposition of ceramic coatings for industrial applications.

    ]]>
    Tue, 06 Jun 2023 16:23:58 +0100 https://content.presspage.com/uploads/1369/057d1a7e-4210-4383-a30a-b148b2341160/500_allanmatthewsprofile.jpeg?10000 https://content.presspage.com/uploads/1369/057d1a7e-4210-4383-a30a-b148b2341160/allanmatthewsprofile.jpeg?10000
    The University of Manchester leading innovation in hydrogen economy /about/news/the-university-of-manchester-leading-innovation-in-hydrogen-economy/ /about/news/the-university-of-manchester-leading-innovation-in-hydrogen-economy/576208A multi-million pound project awarded from the UK Government Department for Energy Security and Net Zero to accelerate the deployment of next-generation cutting-edge low-carbon hydrogen technology.

    ]]>
    The University of Manchester will lead an international team to build and demonstrate a new technology to produce syngas and pure hydrogen with nearly zero direct carbon dioxide emissions. 

    , specifically part of the Net Zero Innovation Portfolio (NZIP), also involves five world-leading industrial partners in the area of engineering for sustainable development: , , , and .

    The RECYCLE project (REthinking low Carbon hYdrogen production by Chemical Looping rEforming) will construct and test a fully integrated innovative hydrogen production pilot unit at The University of Manchester. 

    The technology is based on chemical looping reforming using fixed bed reactors which allow modular units and cost-effective solutions for hydrogen production using different feedstocks, with inherent carbon dioxide capture and separation at high purity. 

    The final demonstration is planned for the second half of 2024 in the pilot area of the at The University of Manchester.

    James Chadwick Building

     

     

     

     

     

     

     

     

    The UK is leading the industrial revolution to achieve carbon neutrality by 2050. In the recently published , the UK government is expecting to have two gigawatts of low-carbon hydrogen production capacity in operation or construction by 2025 and 10 gigawatts in 2030, subject to affordability and value for money. In this context, the RECYCLE project in 91ֱ represents an opportunity to to show continued innovation in the development of resilient and cost effective solutions for a low carbon future.

    Dr Vincenzo Spallina, Senior Lecturer at The University of Manchester and Principal Investigator of the RECYCLE project, said: “The carried out during Phase 1 demonstrated great potential for low carbon hydrogen in the UK market and it has huge implications for several industrial stakeholders. This project will demonstrate its feasibility at a pre-commercial scale to increase awareness of the next steps towards commercial implementation.  

    “The demonstration plant will be installed in the James Chadwick Building where we are currently renovating the existing pilot hall area to establish the for Research and Innovation on sustainable process technologies. Our students will have the fantastic opportunity to see the next-generation hydrogen plant in operation as a unique teaching and learning experience. “

    Professor Alice Larkin, Head of the School of Engineering at The University of Manchester, added: “Our University is committed to achieving zero carbon emissions by 2038 as part of its and supported by activity through our  Advanced Materials and Energy research beacons. This collaborative project will boost the prestige of our academic community to secure clean and sustainable development through Science and Innovation in close partnerships with industries."

    Silvian Baltac, Associate Partner and Industrial Decarbonisation lead at Element Energy, an ERM Group company, said: “We are delighted to continue supporting the University of Manchester and the RECYCLE Consortium with the Phase II of the project. Element Energy, a leading low-carbon consultancy, will help develop the go-to-market strategy for the RECYCLE technology, as well as support the Consortium with strategic communications and engagement, ensuring learnings from the project are disseminated with industry, academia, and the wider energy sector.”

    Mark Wickham, CEO of HELICAL ENERGY, commented: “Our business is fully committed to achieving zero carbon emissions by 2038, by helping to develop and build neutral and negative carbon emissions technologies. This exciting collaborative project with the University of Manchester and industry partners will broaden our knowledge and experience in translational energy and build upon the work we are currently doing with other universities on carbon capture and hydrogen from biogenic fuels. RECYCLE is a fantastic innovative project that will make a significant contribution to carbon neutrality."

    Les Newman, Engineering & Consulting Managing Director at Kent, said: “We are delighted to be part of this cutting-edge project.  It is aligned with Kent’s purpose to be a catalyst for energy transition and an exciting addition to our blue hydrogen project portfolio.  We look forward to working with the University of Manchester and the consortium partners to advance the progress of this novel low-carbon hydrogen and carbon capture technology."

    Suzanne Ellis, Innovation Director for Catalyst Technologies at Johnson Matthey, said: “Johnson Matthey works with partners around the world to apply our expertise in synthesis gas, process technology and catalysis to enable a transition to a net zero future. We are delighted to be part of this consortium led by University of Manchester, exploring the potential for this promising next generation technology to be moved through to industrial impact, whilst also inspiring the next generation of scientists and engineers.”

    Hugues Foucault, CO2 Capture R&D manager from TotalEnergies, said: “TotalEnergies  is supporting R&D in the Chemical Looping Combustion technology and it is involved in the Phase 2 of the RECYCLE project to technically and economically assess this process of blue hydrogen production with inherent carbon dioxide capture."

    Minister for Energy Efficiency and Green Finance Lord Callanan said: “Hydrogen, known as the super fuel of the future, is critical to delivering UK energy security and clean, sustainable growth. 

    “I’m delighted that we have awarded funding to The University of Manchester so that they can build and test their first-of-a-kind hydrogen technology. This will generate opportunities for UK businesses to export their expertise around the world whilst supporting our ambition to have amongst the cheapest energy in Europe.”

    The Department for Energy Security and Net Zero provides dedicated leadership focused on delivering security of energy supply, ensuring properly functioning markets, greater energy efficiency and seizing the opportunities of net zero to lead the world in new green industries.

    The funding from the Low Carbon Hydrogen Supply 2 programme comes from the  department’s  £1 billion , which provides funding for low-carbon technologies and systems and aims to decrease the costs of decarbonisation helping enable the UK to end its contribution to climate change.

    ]]>
    Tue, 06 Jun 2023 14:50:54 +0100 https://content.presspage.com/uploads/1369/500_greenerenergycity.jpg?10000 https://content.presspage.com/uploads/1369/greenerenergycity.jpg?10000
    Intelligent membranes with memories make next-generation smart filters /about/news/intelligent-membranes-with-memories-make-next-generation-smart-filters/ /about/news/intelligent-membranes-with-memories-make-next-generation-smart-filters/570223Researchers from the National Graphene Institute (NGI) have made 'intelligent' membranes whose 'memory' can be used in areas like smart separation technology, wound management, drug delivery, sensors and memory devices.

    ]]>
    Researchers from the National Graphene Institute (NGI) have made 'intelligent' membranes whose 'memory' can be used in areas like smart separation technology, wound management, drug delivery, sensors and memory devices.

    "The history of membrane development spans more than 100 years and has led to a revolution in industrial separation processes," says Professor Rahul Raveendran Nair, Carlsberg/Royal Academy of Engineering Research Chair and study team leader. "In recent years, there has been some effort towards making membranes that mimic biological structures, particularly their ‘intelligent’ characteristics."

    Now, in research published today in , scientists explain how they have developed intelligent membranes that can alter their properties depending on the environment and remember how permeable they were before. This means the membranes can adapt to different conditions in their environment and, more importantly, memorise their state, a feature which can be exploited in many different applications.

     A phenomenon known as hysteresis is the most common expression of memory or intelligence in a material. It refers to the situation where a system's current properties are dependent and related to its previous state. Hysteresis is commonly observed in magnetic materials. For example, a magnet may have more than one possible magnetic moment in each magnetic field depending on the field the magnet was subjected to in the past. Hysteresis is rarely seen, however, in molecular transport through artificial membranes.

    "Coming up with simple and effective clean water solutions is one of our greatest global challenges. This study shows that fundamental molecular level insights and nanoscale materials offer great potential for the development of 'smart' membranes for water purification and other applications," said Professor Angelos Michaelides of the University of Cambridge.

    In this work, the 91ֱ team in collaboration with scientists from University of Cambridge, Xiamen University, Dalian University of Technology, University of York, and National University of Singapore has developed intelligent membranes based on MoS2 (a two-dimensional material called molybdenum disulphide) that can remember how permeable they were before. The researchers have shown that the way ions and water infiltrate the membranes can be regulated by controlling the external pH.

    The membranes mimic the function of biological cell membranes and display hysteretic ion and water transport behaviour in response to the pH, which means they remember what pH they were exposed to before. “The memory effects we have seen are unique to these membranes and have never been observed before in any inorganic membranes,” said co-first author Dr Amritroop Achari of the University of Manchester.

    The researchers demonstrated that the biomimetic effect could be used to improve autonomous wound infection sensing. To do this, they placed the membranes in artificial wound exudate, which simulates the liquid produced by wounds, and subjected them to changes in pH. The membranes only allowed permeation of the wound exudate at pH levels relevant to an infected wound, thus allowing them to be used as sensors for infection detection. The researchers say the new membranes can also be used in a host of other pH-dependent applications, from nanofiltration to mimicking the function of neuronal cells.

    Co-author Professor Kostya Novoselov, Langworthy Professor in the School of Physics and Astronomy at the University of Manchester and a professor at the Centre for Advanced 2D Materials, National University of Singapore said, “The uniqueness in this membrane is that its hysteretic pH response can be seen as a memory function, which opens a lot of interesting avenues for the creation of smart membranes and other structures. Research in this direction can play a pivotal role in the design of intelligent technologies for tomorrow.”

     

    Pictured above: Artist's view of intelligent membranes with memory effects, courtesy R.Nair

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

    ]]>
    Wed, 19 Apr 2023 17:36:01 +0100 https://content.presspage.com/uploads/1369/38ba53a8-5723-4f37-9d39-5ddb51fe7307/500_16-9.jpg?10000 https://content.presspage.com/uploads/1369/38ba53a8-5723-4f37-9d39-5ddb51fe7307/16-9.jpg?10000
    Wonder material graphene claims yet another superlative /about/news/wonder-material-graphene-claims-yet-another-superlative/ /about/news/wonder-material-graphene-claims-yet-another-superlative/569386In a paper published in Nature this week (13 Apr 2023), researchers from The University of Manchester report record-high magnetoresistance that appears in graphene under ambient conditions.

    ]]>
    In a paper published in  this week (13 Apr 2023), researchers from The University of Manchester report record-high magnetoresistance that appears in under ambient conditions.

    Materials that strongly change their resistivity under magnetic fields are highly sought for various applications and, for example, every car and every computer contain many tiny magnetic sensors. Such materials are rare, and most metals and semiconductors change their electrical resistivity only by a tiny fraction of a percent at room temperature and in practically viable magnetic fields (typically, by less than a millionth of 1 %). To observe a strong magnetoresistance response, researchers usually cool materials to liquid-helium temperatures so that electrons inside scatter less and can follow cyclotron trajectories.  

    Now a research team led by Professor Sir Andre Geim has found that good old graphene that seemed to be studied in every detail over the last two decade exhibits a remarkably strong response, reaching above 100% in magnetic fields of standard permanent magnets (of about 1,000 Gauss). This is a record magnetoresistivity among all the known materials.

    Speaking about this latest graphene discovery, Sir Andre Geim said: “People working on graphene like myself always felt that this gold mine of physics should have been exhausted long ago. The material continuously proves us wrong finding yet another incarnation. Today I have to admit again that graphene is dead, long live graphene.”

    To achieve this, the researchers used high-quality graphene and tuned it to its intrinsic, virgin state where there were only charge carriers excited by temperature. This created a plasma of fast-moving “Dirac fermions” that exhibited a surprisingly high mobility despite frequent scattering. Both high mobility and neutrality of this Dirac plasma are crucial components for the reported giant magnetoresistance.

    “Over the last 10 years, electronic quality of graphene devices has improved dramatically, and everyone seems to focus on finding new phenomena at low, liquid-helium temperatures, ignoring what happens under ambient conditions. This is perhaps not so surprising because the cooler your sample the more interesting its behaviour usually becomes. We decided to turn the heat up and unexpectedly a whole wealth of unexpected phenomena turned up”, says Dr Alexey Berdyugin, the corresponding authors of the paper.

    In addition to the record magnetoresistivity, the researchers have also found that, at elevated temperatures, neutral graphene becomes a so-called “strange metal”. This is the name given to materials where electron scattering becomes ultimately fast, being determined only by the Heisenberg uncertainty principle. The behaviour of strange metals is poorly understood and remains a mystery currently under investigation worldwide.

    The 91ֱ work adds some more mystery to the field by showing that graphene exhibits a giant linear magnetoresistance in fields above a few Tesla, which is weakly temperature dependent. This high-field magnetoresistance is again record-breaking.

    The phenomenon of linear magnetoresistance has remained an enigma for more than a century since it was first observed. The current 91ֱ work provides important clues about origins of the strange metal behaviour and of the linear magnetoresistance. Perhaps, the mysteries can now be finally solved thanks to graphene as it represents a clean, well-characterised and relatively simple electronic system.

    “Undoped high-quality graphene at room temperature offers an opportunity to explore an entirely new regime that in principle could be discovered even a decade ago but somehow was overlooked by everyone. We plan to study this strange-metal regime and, surely, more of interesting results, phenomena and applications will follow”, adds Dr Leonid Ponomarenko, from Lancaster University and one of the leading Nature paper authors.

    ]]>
    Wed, 12 Apr 2023 16:00:00 +0100 https://content.presspage.com/uploads/1369/500_graphene.jpeg?10000 https://content.presspage.com/uploads/1369/graphene.jpeg?10000
    Inaugural Engineering the Future Conference 'a huge success' /about/news/inaugural-engineering-the-future-conference-a-huge-success/ /about/news/inaugural-engineering-the-future-conference-a-huge-success/568392The first-of-its-kind event showcased 91ֱ’s engineering research and teaching.

    ]]>
    The University of Manchester’s first has been hailed a great success after welcoming more than 400 guests over two days. 

    Hosted by the and the , the first-of-its-kind event showcased 91ֱ’s engineering research and teaching across 28 and 29 March 2023. 

    Attendees, from both within and outside the University, took part in a variety of lectures, panel discussions and exhibits. These explored the ways in which the University is shaping the future through its research and education of the next generation of engineers, including its contributions to the UN Sustainable Development Goals. 

    The inaugural event was held in the new home of Engineering and Materials – a place like no other and one of the largest Higher Education construction projects in the UK. This new part of campus is comprised of five buildings: Engineering Buildings A and B, Oddfellows Hall, James Chadwick Building and York Street Building. 

    Tours of the purpose-built experimental facilities – including a large wave tank used to accelerate the deployment of offshore renewables, and laboratories focused on multipurpose electromagnetic techniques, from de-mining to airport security – proved highly popular.

    ]]>
    Fri, 31 Mar 2023 14:56:35 +0100 https://content.presspage.com/uploads/1369/0cd925b4-73e8-44f3-9d1e-15cc28ed2b04/500_engineeringthefutureconference774x400.jpg?10000 https://content.presspage.com/uploads/1369/0cd925b4-73e8-44f3-9d1e-15cc28ed2b04/engineeringthefutureconference774x400.jpg?10000
    UK recycling system requires 'dramatic overhaul', report finds /about/news/uk-recycling-system-requires-dramatic-overhaul-report-finds/ /about/news/uk-recycling-system-requires-dramatic-overhaul-report-finds/568358The UK’s recycling system requires a dramatic overhaul to effectively tackle the issue of plastic waste, according to a new report published by The University of Manchester’s project team.

    ]]>
    The UK’s recycling system requires a dramatic overhaul to effectively tackle the issue of plastic waste, according to a new report published by The University of Manchester’s project team.

    According to the report, titled a lack of standardisation across the plastics supply chain is contributing to the UK’s failure to transition to a circular economy.  

    As the culmination of a three-year £1.5m interdisciplinary ‘One Bin to Rule Them All’ project – led by The University of Manchester together with a consortium of over 25 industry partners - the report dissects in-depth research with 30 diverse households in Greater 91ֱ exploring how consumers engage with recycling.

    The report’s findings show that a lack of consistency in plastic packaging composition and messaging around recycling practice is causing confusion among consumers, spurring on chronically low recycling rates as a result. The latest annual figures show just 44.4% of plastic waste generated across the UK was recycled in 2021, according to DEFRA.

    This is compounded by the discrepancies in recycling practices between different local authorities. The report estimates that there are 39 differing bin regimes across the UK, as well as 3,500 waste recycling plants with varying capabilities in infrastructure.

    To combat this, the authors of the report trialled introducing a ‘one bin’ system, which saw households decant all plastic waste – including recyclable and non-recyclable materials – into a single bin unit, in place of sorting into different receptacles. The team of academics then processed the plastic collected across the two-week trial period – which equated to almost 200 pieces of plastic per household – to gain a greater understanding of consumer practice and the general material composition of plastic waste.

    The trial found that almost a quarter of the items collected comprised flexible packaging materials, which are often challenging for consumers to recycle. It found that a large-scale standardised approach to the sorting, collection and processing of flexible plastics was critical to improving recycling rates.

    In response to the findings, Dr Helen Holmes, Social Science Lecturer at the Sustainable Consumption Institute at The University of Manchester and lead author, has called for an urgent overhaul of the plastics supply chain, to prioritise targeted standardisation and consistency in three overlapping priority areas – materials, infrastructure and messaging.

    The report comes at a crucial point in UK plastic policy following the introduction of the plastic packaging tax in 2022, and with the Government’s Extended Producer Responsibility (EPR) and Deposit Return Scheme (DRS) policies - measures designed to boost recycling - set to roll out over the next two years.

    Dr Helen Holmes, Social Science Researcher at the Sustainable Consumption Institute at The University of Manchester, said: “Our research shows that there exists a strong desire amongst most consumers to recycle properly - yet they are limited by a combination of unclear messaging and the complexity of the system. Compounding this, it is a postcode lottery as to what sorts of packaging can or cannot be recycled in a specific area, with capability and capacity varying at waste processing plants across the country.

    “A ‘one bin’ system, supported by the introduction of clearer rules on material composition for producers and targeted investment in waste infrastructure for plastic recycling, could play a huge role in simplifying the process. Our analysis has also involved exploring the relative sustainability of different forms of plastic packaging and mapping out the best pathways for processing them. The implications for industry and policymakers are clear – we need greater standardisation and consistency across manufacturing and processing."

    In response to the findings, Helen has called for an overhaul of the full plastic supply chain, as well as for the recycling system to be simplified using knowledge gained from studying consumer practices. “As consumers, we may often feel blamed for our excess packaging waste and the dirge of single-use plastic. On the contrary, our research shows that the majority of households want to do the right thing – indeed, many of the households we interviewed had found alternative routes of recycling for items the local authority would not recycle."

    “However, consumers are limited by complex and unclear messaging, restrictions regarding what can and cannot be recycled and the huge array of packaging. Our trial shows that a ‘one bin’ approach across the UK would improve recycling by simplifying waste management for consumers, driven by standardisation across the system. It’s clear that the willingness for change is there – now the onus is on industry and government to capitalise on this enthusiasm with action.”

    As part of the report, the team has developed an interactive tool that helps industry and policy stakeholders to think practically about what greater standardisation and consistency across manufacturing and processing will involve. It provides information and guidance on plastic waste and allows for a clear overview of the currently most sustainable choices for different plastics.

    Funding for the project was granted as part of UK Research & Innovation’s Industrial Strategy Challenge Fund - Smart Sustainable Plastic Packaging - this aims to establish a portfolio of academic-led research and development to address known problems and knowledge gaps in relation to plastic packaging.

    ]]>
    Fri, 31 Mar 2023 12:05:51 +0100 https://content.presspage.com/uploads/1369/c6e9b7dd-4526-4e32-800e-968476710aa5/500_rubbish-bins-for-recycling-different-types-of-waste-garbage-containers-vector-infographics.jpg-s1024x1024ampwisampk20ampcqajpdbbu9x9hppgob5zc0cvfqtdnl-oce6og7fbjlya.jpg?10000 https://content.presspage.com/uploads/1369/c6e9b7dd-4526-4e32-800e-968476710aa5/rubbish-bins-for-recycling-different-types-of-waste-garbage-containers-vector-infographics.jpg-s1024x1024ampwisampk20ampcqajpdbbu9x9hppgob5zc0cvfqtdnl-oce6og7fbjlya.jpg?10000
    Nanorippled graphene becomes a catalyst /about/news/nanorippled-graphene-becomes-a-catalyst/ /about/news/nanorippled-graphene-becomes-a-catalyst/564560A team of researchers led by Prof. Andre Geim from the National Graphene Institute (NGI) have discovered that nanoripples in graphene can make it a strong catalyst, contrary to general expectations that the carbon sheet is as chemically inert as the bulk graphite from which it is obtained.

    ]]>
    A team of researchers led by Prof. Andre Geim from the National Graphene Institute (NGI) have discovered that nanoripples in graphene can make it a strong catalyst, contrary to general expectations that the carbon sheet is as chemically inert as the bulk graphite from which it is obtained.

    in the Proceedings of the National Academy of Sciences (PNAS), the research has shown that graphene with nanoscale corrugations of its surface can accelerate hydrogen splitting as well as the best metallic-based catalysts. This unexpected effect is likely to be present in all two-dimensional materials, which are all inherently non-flat.

    The 91ֱ team in collaboration with researchers from China and USA conducted a series of experiments to show that non-flatness of graphene makes it a strong catalyst. First, using ultrasensitive gas flow measurements and Raman spectroscopy, they demonstrated that graphene’s nanoscale corrugations were linked to its chemical reactivity with molecular hydrogen (H2) and that the activation energy for its dissociation into atomic hydrogen (H) was relatively small.

    The team evaluated whether this reactivity is enough to make the material an efficient catalyst. To this end, the researchers used a mixture of hydrogen and deuterium (D2) gases and found that graphene indeed behaved as a powerful catalyst, converting H2 and D2 into HD. This was in stark contrast to the behaviour of graphite and other carbon-based materials under the same conditions. The gas analyses revealed that the amount of HD generated by monolayer graphene was approximately the same as for the known hydrogen catalysts, such as zirconia, magnesium oxide and copper, but graphene was required only in tiny quantities, less than 100 times of the latter catalysts.

    “Our paper shows that freestanding graphene is quite different from both graphite and atomically flat graphene that are chemically extremely inert. We have also proved that nanoscale corrugations are more important for catalysis than the ‘usual suspects’ such as vacancies, edges and other defects on graphene’s surface” said Dr Pengzhan Sun, first author of the paper.

    Lead author of the paper Prof. Geim added, “As nanorippling naturally occurs in all atomically thin crystals, because of thermal fluctuations and unavoidable local mechanical strain, other 2D materials may also show similarly enhanced reactivity. As for graphene, we can certainly expect it to be catalytically and chemically active in other reactions, not only those involving hydrogen.”

    “2D materials are most often perceived as atomically flat sheets, and effects caused by unavoidable nanoscale corrugations have so far been overlooked. Our work shows that those effects can be dramatic, which has important implications for the use of 2D materials. For example, bulk molybdenum sulphide and other chalcogenides are often employed as 3D catalysts. Now we should wonder if they could be even more active in their 2D form”.

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

    ]]>
    Tue, 14 Mar 2023 10:23:43 +0000 https://content.presspage.com/uploads/1369/8fa84cc2-a4b9-464f-8be1-adfba980b495/500_rippledgraphenewithdissociatedhydrogenatomsontop.jpg?10000 https://content.presspage.com/uploads/1369/8fa84cc2-a4b9-464f-8be1-adfba980b495/rippledgraphenewithdissociatedhydrogenatomsontop.jpg?10000
    The Eli and Britt Harari Graphene Enterprise Award 2023 /about/news/the-eli-and-britt-harari-graphene-enterprise-award-2023/ /about/news/the-eli-and-britt-harari-graphene-enterprise-award-2023/557850Prizes of £50,000 and £20,000 will be awarded to the individuals or teams who can best demonstrate how their technology relating to graphene or other 2D materials could be applied to a viable commercial opportunity. 

    ]]>
    Now into its tenth year, the competition, in association with Professor Sir Andre Geim, is now open to all students, postdoctoral researchers, and recent graduates of The University of Manchester. This annual competition, managed by the (MEC), encourages new ideas for enterprises involving graphene and other 2D based materials.

    Graphene, a two-dimensional carbon material, is a game-changing UK discovery and its properties make it one of the most important breakthroughs in recent memory. Graphene is a wonder material, with incredible electrical, mechanical, and thermal properties.

    Prizes of £50,000 and £20,000 will be awarded to the individuals or teams who can best demonstrate how their technology relating to graphene or other 2D materials could be applied to a viable commercial opportunity. We will also be including an additional prize that celebrates the University's position as one of the leading institutions in the world on sustainable development.

    Applications will be judged on the strength of their business plan to develop a new graphene-related business. The award then becomes seed funding to allow the candidate to take the first steps towards realising this plan. It recognises the role that high-level, flexible early-stage financial support can play in the successful development of a business targeting the full commercialisation of a product or technology related to research in graphene.

    The final deadline for completed competition entries is midday on Friday 16 June 2023.

    Eli Harari Graphene Enterprise Award 2023: introduction and overview

    Join us on Tuesday 9 May and hear from Tony Walker, Deputy Director of the Masood Entrepreneurship Centre, who will give an overview of the competition, and share with you hints and tips as to what the judges will be looking for in your application.

    You will learn about the support available to support you with your application and how to access this.

    We're also pleased to welcome and introduce you to a previous winner of the competition, who can share with you their experience and how they have progressed with their idea since being involved with the Harari programme.

    Key Dates*

    • Monday 13 February - competition opens for expressions of interest
    • Tuesday 9 May - information session for competition entrants
    • Week of 29 May - meet with application experts from GEIC
    • Week of 5 June - meet with commercialisation experts
    • Friday 16 June - entry deadline, 12pm
    • Wednesday 21 June – Finalists notified
    • Monday, 26 June - Finalists invited to pitch to Mock Panel
    • Monday 3 July – Mock Panel pitch
    • Tuesday 4 July- Finalists invited to pitch in the Final Judging Panel
    • Friday 7 July - Final Judging Panel 1-4pm.
    • Friday 14 July - Winners Awards Event 3.30-5pm.

    *timings may vary 

    ]]>
    Mon, 13 Feb 2023 07:28:34 +0000 https://content.presspage.com/uploads/1369/500_ehthumb.jpg?10000 https://content.presspage.com/uploads/1369/ehthumb.jpg?10000
    Scientists develop graphene aerogel particles for efficient water purification /about/news/scientists-develop-graphene-aerogel-particles-for-efficient-water-purification/ /about/news/scientists-develop-graphene-aerogel-particles-for-efficient-water-purification/557853Writing in the , a team led by based in the (NGI) have produced 3-dimensional particles made of graphene, of many interesting shapes, using a variation of the vortex ring effect. The same effect is used to produce smoke rings and is responsible for keeping dandelion seeds flying. These particles have also been shown to be exceptionally efficient in adsorbing contaminants from water, thereby purifying it.

    ]]>
    Writing in the , a team led by based in the (NGI) have produced 3-dimensional particles made of graphene, of many interesting shapes, using a variation of the vortex ring effect. The same effect is used to produce smoke rings and is responsible for keeping dandelion seeds flying. These particles have also been shown to be exceptionally efficient in adsorbing contaminants from water, thereby purifying it.Prof Aravind Vijayaraghavan

    The researchers have shown that the formation of these graphene particles is governed by a complex interplay between different forces such as viscosity, surface tension, inertia and electrostatics. Prof Vijayaraghavan said: “We have undertaken a systematic study to understand and explain the influence of various parameters and forces involved in the particle formation. Then, by tailoring this process, we have developed very efficient particles for adsorptive purification of contaminants from water”.

    Graphene oxide (GO), a functionalised form of graphene which forms a stable dispersion in water, has many unique properties, including being a liquid crystal. Individual GO sheets are one atom thin, and as wide as the thickness of human hair. However, to be useful, they need to be assembled into complex 3-dimensional shapes which preserves their high surface area and surface chemistry. Such porous 3-dimensional assemblies of GO are called aerogels, and when filled with water, they are called hydrogels.

    The researchers used a second liquid crystal material called CTAB (cetyltrimethylammonium bromide), to aggregate GO flakes into small particles of graphene oxide hydrogels, without needing to reduce them to graphene. This was achieved by dropping the GO dispersion in water in the form of small droplets into a solution of CTAB in water. When the GO droplets hit the surface of the CTAB solution, they behave very similarly to when a jet of hot smoke hits cold air. The GO drop flows into the CTAB solution in the form of a ring, or toroid, because of differences in the density and surface tension of the two liquids. 

    By controlling various parameters of this process, the researchers have produced particles in the shape of spheres (balls), toroids (donuts) and intermediate shapes that resemble jellyfish. Dr Yizhen Shao, a recently graduated PhD student and lead author of this paper, said: “we have developed a universal phase diagram for the formation of these shapes, based on four dimensionless numbers – the weber, Reynolds, Onhesorge and Weber numbers, representing the inertial, viscous, surface tension and electrostatic forces respectively. This can be used to accurately control the particle morphology by varying the formation parameters.”

    The authors highlight the significance of these particles in water purification. Kaiwen Nie, a PhD student and co-author of the paper, said: “We can tune the surface chemistry of the graphene flakes in these particles to extract positively or negatively charged contaminants from water. We can even extract uncharged contaminants or heavy metal ions by appropriately functionalising the graphene surface.”

     

    ]]>
    Thu, 09 Feb 2023 15:10:02 +0000 https://content.presspage.com/uploads/1369/500_grapheneaerogelparticles.jpg?10000 https://content.presspage.com/uploads/1369/grapheneaerogelparticles.jpg?10000
    Graphene researchers discover long-term memory in 2D nanofluidic channels /about/news/graphene-researchers-discover-long-term-memory-in-2d-nanofluidic-channels/ /about/news/graphene-researchers-discover-long-term-memory-in-2d-nanofluidic-channels/555945Published in , a collaboration between teams from the National Graphene Institute at The University of Manchester, and the École Normale Supérieure (ENS), Paris, demonstrated the Hebbian learning in artificial nanochannels, where the channels showed short and long term memory. 

    ]]>
    Published in , a collaboration between teams from the (NGI) at The University of Manchester, and the (ENS), Paris, demonstrated the Hebbian learning in artificial nanochannels, where the channels showed short and long term memory. Hebbian learning is a technical term introduced in 1949 by Donald Hebb, describing the process of learning by repetitively doing an action.

    Hebbian learning is a well-known learning mechanism, it is the process when we ‘get used’ to doing an action. Similar to what occurs in neural networks, the researchers were able to show the existence of memory in two-dimensional channels which are similar to atomic-scale tunnels with heights varying from several nanometers down to angstroms (10-10 m). This was done using simple salts (including table salt) dissolved in water flowing through nanochannels and by the application of voltage (< 1 V) scans/pulses.

    The study spotlights the importance of the recent development of ultrathin nanochannels. Two types of nanochannels were used in this study. The ‘pristine channels’ were from the 91ֱ team led by , which are obtained by the assembly of 2D layers of MoS2. These channels have little surface charge and are atomically smooth. ’s group at ENS developed the ‘activated channels’, these have high surface charge and are obtained by electron beam etching of graphite.

    An important difference between solid-state and biological memories is that the former works by electrons, while the latter have ionic flows central to their functioning. While solid-state silicon or metal oxide based ‘memory devices’ that can ‘learn’ have long been developed, this is an important first demonstration of ‘learning’ by simple ionic solutions and low voltages. “The memory effects in nanochannels could have future use in developing nanofluidic computers, logic circuits, and in mimicking biological neuron synapses with artificial nanochannels”, said co-lead author Prof. Lyderic Bocquet.

    91ֱ group-RBCo-lead author Prof. Radha Boya, added that “the nanochannels were able to memorise the previous voltage applied to them and their conductance depends on their history of the voltage application.” This means the previous voltage history can increase (potentiate in terms of synaptic activity) or decrease (depress) the conduction of the nanochannel. Dr Abdulghani Ismail from the National Graphene Institute and co-first author of the research said, “We were able to show two types of memory effects behind which there are two different mechanisms. The existence of each memory type would depend on the experimental conditions (channel type, salt type, salt concentration, etc.).” 

    Paul Robin from ENS and co-first author of the paper added, “the mechanism behind memory in ‘pristine MoS2 channels’ is the transformation of non-conductive ion couples to a conductive ion polyelectrolyte, whereas for ‘activated channels’ the adsorption/desorption of cations (the positive ions of the salt) on the channel’s wall led to the memory effect.” 

    Co-authors: Prof Lyderic Bocquet, Paul Robin, Dr Theo Emmerich (from Laboratoire de Physique, École Normale Supérieure, Paris)

    Dr Theo Emmerich from ENS and co-first author of the article also commented, “our nanofluidic memristor is more similar to the biological memory when compared to the solid-state memristors”. This discovery could have futuristic applications, from low-power nanofluidic computers to neuromorphic applications.

     

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

    ]]>
    Wed, 25 Jan 2023 14:50:45 +0000 https://content.presspage.com/uploads/1369/500_toc-19jan23-rboya.jpg?10000 https://content.presspage.com/uploads/1369/toc-19jan23-rboya.jpg?10000
    University of Manchester graphene partnership with Khalifa University aims to tackle global challenges /about/news/manchesters-graphene-partnership-with-khalifa-university-aims-to-tackle-global-challenges/ /about/news/manchesters-graphene-partnership-with-khalifa-university-aims-to-tackle-global-challenges/548688An ambitious partnership between The University of Manchester and Abu Dhabi-based Khalifa University of Science and Technology has been agreed, with the aim to deliver a funding boost to graphene innovation that will help tackle the planet’s greatest challenges.

    ]]>
    An ambitious partnership between The University of Manchester and Abu Dhabi-based Khalifa University of Science and Technology has been agreed with the aim to deliver a funding boost to graphene innovation that will help tackle the planet’s big challenges.

    Professor Dame Nancy Rothwell, President & Vice-Chancellor of The University of Manchester, and Professor Sir John O’Reilly, President, Khalifa University (pictured above) officially signed a contract between the two institutions during a VIP visit by a 91ֱ delegation to the United Arab Emirates (UAE). Senior officials from both universities were present at the signing (pictured below).

    This international partnership will further accelerate 91ֱ and Abu Dhabi’s world-leading research and innovation into graphene and other 2D materials. The Research & Innovation Center for Graphene and 2D Materials (RIC-2D), based in Khalifa University, is part of a strategic investment programme supported by the Government of Abu Dhabi, UAE. 

    Growing international partnership

    This partnership will support expediting the development of the RIC-2D at Khalifa University as well as help building capability in graphene and 2D materials in collaboration with Graphene@91ֱ, a community that includes the academic–led National Graphene Institute (NGI) and the commercially-focused Graphene Engineering Innovation Centre (GEIC), a pioneering facility already backed by the Abu Dhabi-based renewable energy company Masdar.

    UoM-KU signing Nancy John OReilly and team crop

    The historic agreement will bring together the vision of the two universities to tackle some of the globe’s biggest challenges, such as providing clean drinking water for millions of people and supporting a circular ‘green economy’ in all parts of the world.

    Graphene – originally isolated at The University of Manchester, the global ‘home of graphene’ – has the potential to deliver transformational technologies. The focus of the Khalifa–91ֱ partnership will be on key themes, with a priority to meet the most immediate of global challenges, including  climate change and the energy crisis. These flagship areas are:

    ●&Բ;         Water filtration and desalination – graphene and 2D materials are being applied to next generation filtration technologies to significantly boost their effectiveness and efficiency to help safeguard the world’s precious supply of drinking water

    ●&Բ;         Construction – graphene is helping to develop building materials that are much more sustainable and when applied at scale can expect to slash global CO2 emissions

    ●&Բ;         Energy storage – applications are being developed across the energy storage sector to produce more efficient batteries, with greater capacity and higher performance, and other energy storage systems vital to a circular ‘green economy’

    ●&Բ;         Lightweighting of materials – the use of graphene and 2D materials to take weight out of vehicles, as well as large structures and infrastructure, will also be a key to building a more sustainable future.

    The investment is expected to be allocated towards joint projects. The full scope and budgets for projects under this new framework agreement remain to be determined in the months ahead. The proposal will see dedicated space for the Khalifa University’s RIC-2D within the GEIC, which is based in the Masdar Building at The University of Manchester, to deliver rapid R&D and breakthrough technologies. Researchers from Khalifa University will have dedicated lab space in the GEIC where they can work alongside 91ֱ’s applications experts and access in-house facilities and equipment.

    Knowledge exchange

    As well as the research and innovation activity, the RIC-2D programme will support the development of people, including early-career researchers who will benefit from the real-world experience of working on the joint R&D programme. Also, there will be opportunities for post-graduate students, including the exchange of PhD students and researchers (see Fact File below).

    Professor Sir John O’Reilly, President, Khalifa University, said: “This Khalifa University-University of Manchester collaboration is greatly to be welcomed. It has all the hallmarks of a most successful approach to inspiring and nurturing outstanding research, innovation and enterprise in graphene to be taken forward to the benefit of the wider community.”

    Professor Dame Nancy Rothwell, President & Vice-Chancellor of The University of Manchester, said: “We look forward to a long and productive partnership with Khalifa University that will realise the potential of graphene to address global challenges including water and energy security and, above all, sustainability.”

    Dr Arif Sultan Al Hammadi, Executive Vice-President, Khalifa University, said: “We are delighted to enter into this partnership with The University of Manchester and encourage innovation in graphene through a pipeline of projects, as well as focus on transferring technology towards commercialization. Through this agreement, we will continue to not only focus our research activities on existing flagship projects in water filtration, construction, energy storage and composites but also expand to new areas. This combination of virtual and in-person collaborations will also include exchange of PhD students and sponsored labs within the Graphene Engineering Innovation Centre (GEIC) at 91ֱ.

    Professor Luke Georghiou, Deputy President and Deputy Vice-Chancellor of The University of Manchester, said: “Our excellent relationship with our partners in Abu Dhabi, including Khalifa University and Masdar, has been vital in the success of the world-leading graphene research and innovation activities at The University of Manchester, especially in driving forward the commercialisation of 2D materials in our facilities based in the Graphene Engineering Innovation Centre. This new investment will deliver a game-changing step change in our lab-to-market ambitions - and will accelerate the translation of graphene in an unprecedented way.”

    Professor Hassan Arafat, Senior Director, RIC-2D, said: “The overarching goal of RIC-2D is to be a catalyst for economic growth in the UAE, by enabling industrial and public entities within the country to utilize graphene and other 2D materials in new technologies that add economic value and solve pressing societal challenges such as water scarcity and greenhouse emissions. Therefore, the center will support a range of fundamental and translational research projects, in addition to commercialization and technology transfer activities. Graphene@91ֱ has accumulated significant experience doing the same in the UK over the past decade. Hence, they were naturally identified as one of RIC-2D’s most strategic partners.”

    James Baker, CEO of Graphene@91ֱ, explained: “We have built a unique model of innovation for advanced materials in Greater 91ֱ by successfully attracting regional, national and international investment.

    “The RIC-2D programme will be a significant funding boost for UK-based graphene research and commercialisation. It is set to significantly accelerate the work that is already happening in our ecosystem and help with the application and commercialisation of 2D materials at a rate much faster than you would normally expect for a revolutionary new material like graphene.

    “This provides an opportunity to fast-track technologies that are urgently needed to tackle immediate challenges like climate change or the energy crisis. The University of Manchester and Khalifa University will play a key role in connecting our ambitions by synchronising new research with key industry and supply-chain companies across a range of sectors.

    “Our lab-to-market model will link up fundamental research with applied research and ultimately be part of a pipeline delivering new, market-ready technologies.  The programme will also provide industry-standard equipment and capabilities for the rapid scale-up and pilot production of prototypes.”

    Graphene@91ֱ’s world-class facilities and resources are supported by internationally renowned academics and industry-experienced engineers and innovation experts, working across a very broad range of novel technologies and applications.

    James Baker added: “Together, these experts will focus on industry-led 2D material development and look to help companies design, develop, scale-up and ‘de-risk’ the next generation of innovative products and processes,”

    Fact File - joint R&D programme

    The joint R&D programme between The University of Manchester and Khalifa University  will provide a pipeline of projects from the near to long-term to ensure that RIC-2D development activities remain world-leading and are based upon a strong scientific foundation.

    Part of the R&D programme will focus on Technology Readiness Levels (TRLs) 1-3 – i.e. early stage research and development - beyond which the research teams will collaborate with applications experts at the Graphene Engineering Innovation Centre (GEIC) in a bid to transfer the technology for commercialisation.

    The shared R&D platforms are designed to support existing flagship projects, including those involved with water filtration, construction, energy storage and composites – but there will be an expectation to develop new streams. Finally, the R&D programme will produce high quality academic publications that will add to the prestige and international reputation of RIC-2D.

    The joint programme will be a combination of virtual and in-person collaborations, through the exchange of PhD students and researchers and having Khalifa University sponsored labs based within the GEIC.

    About Khalifa University of Science and Technology

    Khalifa University of Science and Technology, the UAE’s top-ranked research-intensive institution, focuses on developing world-leading critical thinkers in science, engineering and medicine. The world-class university endeavours to be a catalyst to the growth of Abu Dhabi and the UAE’s rapidly developing knowledge economy as an education destination of choice and a global leader among widely acknowledged international universities.

    For more information, please visit:

     is one of The University of Manchester’s  - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons.

    ]]>
    Mon, 28 Nov 2022 08:00:00 +0000 https://content.presspage.com/uploads/1369/500_uom-kusigningnancyjohnoreilly11200px.jpg?10000 https://content.presspage.com/uploads/1369/uom-kusigningnancyjohnoreilly11200px.jpg?10000
    Graphene scientists explore electronic materials with nanoscale curved geometries /about/news/graphene-scientists-explore-electronic-materials-with-nanoscale-curved-geometries/ /about/news/graphene-scientists-explore-electronic-materials-with-nanoscale-curved-geometries/547830In a recently published paper, an international research group examined significant development directions in the field of electronic materials with curved geometries at the nanoscale. From microelectronic devices with enhanced functionality to large-scale nanomembranes consisting of networks of electronic sensors that can provide improved performance.

    ]]>
    In a recently published paper in , an international research group from Italy, Germany, the UK, and China examined significant development directions in the field of electronic materials with curved geometries at the nanoscale. From microelectronic devices with enhanced functionality to large-scale nanomembranes consisting of networks of electronic sensors that can provide improved performance.

    The scientists argue that exciting developments induced by curvature at the nanoscale allow them to define a completely new field – curved nanoelectronics. The paper examines in detail the origin of curvature effects at the nanoscale and illustrates their potential applications in innovative electronic, spintronic and superconducting devices.

    Curved solid-state structures also offer many application opportunities. On a microscopic level, shape deformations in electronic nanochannels give rise to complex three-dimensional spin textures with an unbound potential for new concepts in spin-orbitronics, which will help develop energy-efficient electronic devices. Curvature effects can also promote, in a semimetallic nanowire, the generation of topological insulating phases that can be exploited in nanodevices relevant for quantum technologies, like quantum metrology. In the case of magnetism, curvilinear geometry directly forges the magnetic exchange by generating an effective magnetic anisotropy, thus prefiguring a high potential for designing magnetism on demand.

    Dr Ivan Vera-Marun from the National Graphene Institute at The University of Manchester commented: “nanoscale curvature and its associated strain result in remarkable effects in graphene and 2D materials. The development in preparation of high-quality extended thin films, as well as the potential to arbitrarily reshape those architectures after their fabrication, has enabled first experimental insights into how next-generation electronics can be compliant and thus integrable with living matter”.

    The paper also describes the methods needed to synthesise and characterise curvilinear nanostructures, including complex 3D nanoarchitectures like semiconductor nanomembranes and rolled up sandwiches of 2D materials, and highlights key areas for the future developments of curved nanoelectronics.

    The image above features a sketch of different research topics currently explored in electronic materials with nanoscale curved geometries. From left to right: geometry-controlled quantum spin transport, spin-triplet Cooper pairs in superconductors, magnetic textures in curvilinear structures.

    ]]>
    Thu, 17 Nov 2022 13:24:28 +0000 https://content.presspage.com/uploads/1369/500_ivan-image.jpg?10000 https://content.presspage.com/uploads/1369/ivan-image.jpg?10000
    Henry Royce Institute headquartered at The University of Manchester receives £95m new government funding for advanced materials research and development /about/news/henry-royce-institute-headquartered-at-the-university-of-manchester-receives-95m-new-government-funding-for-advanced-materials-research-and-development/ /about/news/henry-royce-institute-headquartered-at-the-university-of-manchester-receives-95m-new-government-funding-for-advanced-materials-research-and-development/545903At a visit yesterday (Thursday 3 November) the new Business Secretary, Grant Shapps, has announced a £95m investment to the Henry Royce Institute (‘Royce’) headquartered at The University of Manchester. 

    ]]>
    At a visit yesterday (Thursday 3 November) the new Business Secretary, Grant Shapps, has announced a £95m investment to the (‘Royce’) headquartered at The University of Manchester. The funding will enable new advanced materials research and development, critical to sectors including health and energy.

    Awarded via the (EPSRC), it follows an initial £258m government investment made over the course of five years to establish key infrastructure required by the advanced materials sector. Royce aims to support the growth of world-recognised excellence in UK materials research, accelerating commercial exploitation and delivering positive economic and societal impact.

    The new funding will enable the Institute to accelerate translational research in advanced materials targeting our biggest challenges, providing access to research capabilities, identifying opportunities for collaboration between businesses and researchers and developing the next generation of materials scientists.

    During his first official visit in his new role as Business Secretary, Grant Shapps said: ‘R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country - including here in the heart of Manchester.

    'Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.’

    Professor David Knowles, Royce CEO said: ‘Royce and its partners across the UK, along with the advanced materials community, is very pleased to be able to confirm this Phase ll EPSRC funding. Innovation in advanced materials underpins a wider range of our industrial sectors and is fundamental to our economic growth.

    ‘Our Partnership offers a unique combination of materials science expertise, state-of-the-art laboratories and fantastic collaboration spaces for the advanced materials community. As we enter our Phase ll operations we are focused now, more than ever, on working with the community to identify the key challenges and opportunities ahead of us and supporting the translation of innovative research into the viable products and systems needed to ensure a sustainable future for us all.’

    EPSRC Executive Chair Professor Dame Lynn Gladden said: ‘Advanced materials are crucial to driving growth across our key industries, from energy and transport to health, and ensuring they are sustainable for the future. This funding will build on the success of the Henry Royce Institute so far, to unleash the potential of this transformative technology for the benefit of the economy and the environment.’

    University of Manchester President and Vice-Chancellor, Professor Dame Nancy Rothwell said: ‘I am delighted that the fantastic work of the Royce in this sector has been recognised by this major award from EPSRC, further reinforcing 91ֱ’s place at the epicentre of this revolutionary area of research and development.’

    Advanced Materials

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest challenges facing the planet.

    Advanced materials and manufacturing were identified in the government’s  as one of seven technology families in which the UK has globally competitive R&D and industrial strength.

    ]]>
    Fri, 04 Nov 2022 00:05:00 +0000 https://content.presspage.com/uploads/1369/500_grantshappsattheroyce.jpg?10000 https://content.presspage.com/uploads/1369/grantshappsattheroyce.jpg?10000
    Scientists discover they can pull water molecules apart using graphene electrodes /about/news/scientists-discover-they-can-pull-water-molecules-apart-using-graphene-electrodes/ /about/news/scientists-discover-they-can-pull-water-molecules-apart-using-graphene-electrodes/536220Graphene scientists from The University of Manchester discovered that water molecules on the surface of graphene electrodes split exponentially faster with stronger electrical forces – a phenomenon known as the Wien effect.

    ]]>
    Writing in , a team led by Dr Marcelo Lozada-Hidalgo based at the (NGI) used graphene as an electrode to measure both the electrical force applied on water molecules and the rate at which these break in response to such force. The researchers found that water breaks exponentially faster in response to stronger electrical forces.

    Marcelo Lozada-HidalgoThe researchers believe that this fundamental understanding of interfacial water could be used to design better catalysts to generate hydrogen fuel from water. This is an important part of the UK’s strategy towards achieving a net zero economy. Dr Marcelo Lozada-Hidalgo said: “We hope that the insights from this work will be of use to various communities, including physics, catalysis, and interfacial science and that it can help design better catalysts for green hydrogen production”.

    A water molecule consists of a proton and a hydroxide ion. Dissociating it involves pulling these two constituent ions apart with an electrical force. In principle, the stronger one pulls the water molecule apart, the faster it should break. This important point has not been demonstrated quantitatively in experiments.

    Electrical forces are well known to break water molecules, but stronger forces do not always lead to faster water dissociation, which has puzzled scientists for a long time. A key difference with graphene electrodes is that these are permeable only to protons. The researchers found that this allows separating the resulting proton from the hydroxide ion across graphene, which is a one-atom-thick barrier that prevents their recombination. This charge separation is essential to observe the electric field acceleration of water dissociation. Another key advantage of graphene is that it allows evaluating the electric field at the graphene-water interface experimentally, which allows for quantitative characterisation of the field effect.

    Junhao CaiThe results can be explained using the classical Onsager theory, which had remained unverified experimentally in the important case of water. Junhao Cai, a PhD student and co-first author of the work said: “We were surprised to find how well the Onsager theory fitted our data. This theory provides insights into interfacial water, including an independent estimate of its dielectric constant, which remains poorly understood”.

    Eoin GriffinThe authors are excited about the possibilities offered by their experimental setup. Eoin Griffin, PhD student and co-first author of the work said: “Graphene electrodes combine three properties that, as far as we know, are never found together in a single system: only protons permeate through the crystal, it is one-atom-thick and it can sustain very strong electrical forces. This combination allows us to essentially pull apart the first layer of water molecules on the graphene surface”.

    ]]>
    Fri, 07 Oct 2022 07:00:00 +0100 https://content.presspage.com/uploads/1369/500_marcelohydrogen3pcblack.png?10000 https://content.presspage.com/uploads/1369/marcelohydrogen3pcblack.png?10000
    How to tell if that plastic bottle or bag has recycled material in it /about/news/how-to-tell-if-that-plastic-bottle-or-bag-has-recycled-material-in-it/ /about/news/how-to-tell-if-that-plastic-bottle-or-bag-has-recycled-material-in-it/536524Materials researchers have developed a new technique to successfully determine the recycled contents of plastic products.

    ]]>
    Materials researchers have developed a new technique to successfully determine the recycled contents of plastic products.

    To encourage more recycling, some countries are taxing single-use plastic products containing less than 30% recycled plastic material. But aside from a manufacturer’s word, there isn’t an easy way to verify this.

    Now, researchers reporting in have developed a simple, fraud-resistant technique to evaluate the recycled content of new plastic products. They added a fluorescent tag to plastic resins, successfully tracking the recycled content in products made with a variety of plastics and colours.

    After reducing and reusing, recycling is the last line of defence for keeping plastic out of landfills or the environment. To encourage plastic recycling, some countries have shifted the responsibility to producers for incorporating these “post-consumer materials” in new products, such as single-use items and packaging. Whereas the U.K. is taxing plastic products with little recycled content, other countries, such as Italy and Spain, plan to impose taxes soon on products that contain no recycled content.

    However, approaches to verify these amounts aren’t always accurate, potentially leading to fraud and public mistrust. One solution could be to tag recycled plastics with the fluorescent molecule 4,4,-bis(2-benzoxazolyl)stilbene (BBS), and then track the tagged recycled feedstocks into their resulting products. BBS’s fluorescence intensity and colour vary when different levels are present, and it’s inexpensive and approved for food contact applications. So, Michael Shaver and colleagues wanted to see how BBS could be used to measure the recycled content of single-use plastic products.

    The researchers mixed small amounts of BBS into melted high-density polyethylene (HDPE) and then mixed that with virgin HDPE resin, simulating 0 to 100% recycled content materials. As the amount of BBS tagged-HDPE rose in the samples, the fluorescence intensity shifted toward a greener hue of blue under a UV light.

    The marked plastic had a unique fluorescence behaviour, which the researchers suggest would be hard for someone with fraudulent intentions to replicate. Next, the team developed a simple digital image analysis technique that converted the material’s fluorescence into the percentage of recycled content.

    “In tests, the method could identify the recycled content in other real-world plastics, including recycled milk bottles with additives, coloured HDPE, polypropylene and poly(ethylene terephthalate). The BBS strategy could be applied to a variety of single-use plastic products without impacting their appearance or quality,” says Professor Michael Shaver.

    The authors acknowledge support from the Henry Royce Institute for Advanced Materials, the Sustainable Materials Innovation Hub and the 91ֱ Institute of Biotechnology.

    The authors have filed a patent on this technology in the U.K.

    ]]>
    Mon, 03 Oct 2022 10:19:00 +0100 https://content.presspage.com/uploads/1369/500_disposable-plastic-bag-waste-recycling-450nw-1421745995.jpg?10000 https://content.presspage.com/uploads/1369/disposable-plastic-bag-waste-recycling-450nw-1421745995.jpg?10000
    Graphene as 'the philosopher’s stone’: turning waste into gold /about/news/graphene-as-the-philosophers-stone-turning-waste-into-gold/ /about/news/graphene-as-the-philosophers-stone-turning-waste-into-gold/522802Scientists from 91ֱ and China have demonstrated that graphene can be a kind of ‘philosopher’s stone’, allowing gold extraction from waste containing only trace amounts of gold.

    ]]>
    Throughout history, alchemists believed in the existence of the philosopher’s stone: a substance that could turn cheap substances into precious gold. Now scientists from The University of Manchester, Tsinghua University in China and the Chinese Academy of Sciences have shown that graphene can be a kind of philosopher’s stone, allowing gold extraction from waste containing only trace amounts of gold (down to billionth of a percent).

    This new, seemingly magical application of graphene works quite straightforwardly: add graphene into a solution containing traces of gold and, after a few minutes, pure gold appears on graphene sheets, with no other chemicals or energy input involved. After this you can extract your pure gold by simply burning the graphene off.

    The research, , shows that 1 gram of graphene can be sufficient for extracting nearly 2 grams of gold. As graphene costs less than $0.1 per gram, this can be very profitable, with gold priced at around $70 per gram.

    Dr Yang Su from Tsinghua University, who led the research efforts, commented: “This apparent magic is essentially a simple electrochemical process. Unique interactions between graphene and gold ions drive the process and also yield exceptional selectivity. Only gold is extracted with no other ions or salts.”

    Gold is used in many industries including consumer electronics (mobile phones, laptops etc.) and, when the products are eventually discarded, little of the electronic waste is recycled. The graphene-based process with its high extraction capacity and high selectivity can reclaim close to 100% of gold from electronic waste. This offers an enticing solution for addressing the gold sustainability problem and e-waste challenges.

    “Graphene turns rubbish into gold, literally,” added Professor Andre Geim from The University of Manchester, another lead author and Nobel laureate responsible for the first isolation of graphene.

    “Not only are our findings promising for making this part of the economy more sustainable, but they also emphasise how different atomically-thin materials can be from their parents, well-known bulk materials,” he added. “Graphite, for example, is worthless for extracting gold, while graphene almost makes the philosopher’s stone”.

    Professor Hui-ming Cheng, one of the main authors from the Chinese Academy of Sciences, commented: “With the continuing search for revolutionary applications of graphene, our discovery that the material can be used to recycle gold from electronic waste brings additional excitement to the research community and developing graphene industries.”

    ]]>
    Tue, 16 Aug 2022 14:30:00 +0100 https://content.presspage.com/uploads/1369/500_goldextractionrecyclingusinggraphene.jpg?10000 https://content.presspage.com/uploads/1369/goldextractionrecyclingusinggraphene.jpg?10000
    91ֱ researchers make ‘significant advance’ in 2D material science with diversely behaving layers in a single bulk material /about/news/manchester-researchers-make-significant-advance-in-2d-material-science-with-diversely-behaving-layers-in-a-single-bulk-material/ /about/news/manchester-researchers-make-significant-advance-in-2d-material-science-with-diversely-behaving-layers-in-a-single-bulk-material/522795Scientists from The University of Manchester have developed a novel yet simple method for producing vertical stacks of alternating superconductor and insulator layers of tantalum disulphide (TaS2), potentially speeding up manufacture of ‘heterostructure’ devices for high-mobility transistors, photovoltaics and optoelectronics.

    ]]>
    Scientists from The University of Manchester have developed a novel yet simple method for producing vertical stacks of alternating superconductor and insulator layers of tantalum disulphide (TaS2). The findings, from a team led by Professor Rahul Nair, could speed up the process of manufacturing such devices – so-called van der Waals heterostructures – with application in high-mobility transistors, photovoltaics and optoelectronics.

    Van der Waals heterostructures are much sought after since they display many unique and useful properties not found in naturally occurring materials. In most cases, they are prepared by manually stacking one layer over the other in a time-consuming and labour-intensive process.

    Published last week , the study - led by researchers based at the National Graphene Institute (NGI) - describes synthesis of a bulk van der Waals heterostructure consisting of alternating atomic layers of 1T and 1H TaS2. 1T and 1H TaS2 are different polymorphs (materials with the same chemical composition but with a variation in atomic arrangement) of TaS2 with completely different properties – the former insulating, the latter superconducting at low temperatures.

    The new heterostructure was obtained through the synthesis of 6R TaS2 (a rare type of TaS2, with alternating 1T and 1H layered structure) via a process known as ‘phase transition’ at high temperature (800˚C). Due to its unusual structure, this material shows the co-existence of superconductivity and charge density waves, a very rare phenomenon.

    Dr Amritroop Achari, who led the experiment said: “Our work presents a new concept for designing bulk heterostructures. The novel methodology allows the direct synthesis of bulk heterostructures of 1T‐1H TaS2 by a phase transition from a readily available 1T TaS2. We believe our work provides significant advances in both science and technology.”

    International collaboration

    The work was conducted in collaboration with scientists from the NANOlab Center of Excellence at the University of Antwerp, Belgium. Their high‐resolution scanning electron microscopy analysis unambiguously proved the alternating 1T‐1H hetero-layered structure of 6R TaS2 for the first time and paved the way to interpret the findings.

    Professor Milorad Milošević, the lead researcher from the University of Antwerp, commented: “This demonstration of an alternating insulating‐superconducting layered structure in 6R TaS2 opens a plethora of intriguing questions related to anisotropic behaviour of this material in applied magnetic field and current, emergent Josephson physics, terahertz emission etc., in analogy to bulk cuprates and iron‐based superconductors.”

    The findings could therefore have a widespread impact on the understanding of 2D superconductivity, as well as further design of advanced materials for terahertz and Josephson junctions-based devices, a cornerstone of second-generation quantum technology.

    Main image (top):  Electron microscopy image of the synthesized 6R TaS2 with an atomic model of the material on the left. The brown spheres represent Ta atoms and the yellow spheres represent sulphur atoms. The atomic positions and arrangement in the microscopic image are an exact match with the model, confirming its structure.

    ]]>
    Tue, 02 Aug 2022 15:22:22 +0100 https://content.presspage.com/uploads/1369/500_6rtas2-electronmicroscopeimage.png?10000 https://content.presspage.com/uploads/1369/6rtas2-electronmicroscopeimage.png?10000
    Graphene scientists capture first images of atoms ‘swimming’ in liquid /about/news/graphene-scientists-capture-first-images-of-atoms-swimming-in-liquid/ /about/news/graphene-scientists-capture-first-images-of-atoms-swimming-in-liquid/521859Graphene scientists from The University of Manchester have created a novel ‘nano-petri dish’ using two-dimensional (2D) materials to create a new method of observing how atoms move in liquid, with potential application in green energy technologies.

    ]]>
    Graphene scientists from The University of Manchester have created a novel ‘nano-petri dish’ using two-dimensional (2D) materials to create a new method of observing how atoms move in liquid.

    Publishing in the journal, , the team led by researchers based at the (NGI) used stacks of 2D materials including graphene to trap liquid in order to further understand how the presence of liquid changes the behaviour of the solid.

    The team were able to capture . The findings could have widespread impact on the future development of green technologies such as hydrogen production.

    When a solid surface is in contact with a liquid, both substances change their configuration in response to the proximity of the other. Such atomic scale interactions at solid-liquid interfaces govern the behaviour of batteries and fuel cells for clean electricity generation, as well as determining the efficiency of clean water generation and underpinning many biological processes.

    One of the lead researchers, Professor Sarah Haigh, commented: “Given the widespread industrial and scientific importance of such behaviour it is truly surprising how much we still have to learn about the fundamentals of how atoms behave on surfaces in contact with liquids. One of the reasons information is missing is the absence of techniques able to yield experimental data for solid-liquid interfaces.”

    Transmission electron microscopy (TEM) is one of only few techniques that allows individual atoms to be seen and analysed. However, the TEM instrument requires a high vacuum environment, and the structure of materials changes in a vacuum. First author, Dr Nick Clark explained: “In our work we show that misleading information is provided if the atomic behaviour is studied in vacuum instead of using our liquid cells.”

    The NGI's Professor Roman Gorbachev has pioneered the stacking of 2D materials for electronics but here his group have used those same techniques to develop a ‘double graphene liquid cell’. A 2D layer of molybdenum disulphide was fully suspended in liquid and encapsulated by graphene windows. This novel design allowed them to provide precisely controlled liquid layers, enabling the unprecedented videos to be captured showing the single atoms ’swimming’ around surrounded by liquid.

    By analysing how the atoms moved in the videos and comparing to theoretical insights provided by colleagues at Cambridge University, the researchers were able to understand the effect of the liquid on atomic behaviour. The liquid was found to speed up the motion of the atoms and also change their preferred resting sites with respect to the underlying solid.

    The team studied a material that is promising for green hydrogen production but the experimental technology they have developed can be used for many different applications.

    Dr Nick Clark said: “This is a milestone achievement and it is only the beginning – we are already looking to use this technique to support development of materials for sustainable chemical processing, needed to achieve the world’s net zero ambitions.”

    is one of The University of Manchester’s - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

    ]]>
    Wed, 27 Jul 2022 16:00:00 +0100 https://content.presspage.com/uploads/1369/500_output-01.png?10000 https://content.presspage.com/uploads/1369/output-01.png?10000
    National Graphene Institute scientist shortlisted for prestigious £350,000 engineering award /about/news/national-graphene-institute-scientist-shortlisted-for-prestigious-350000-engineering-award/ /about/news/national-graphene-institute-scientist-shortlisted-for-prestigious-350000-engineering-award/519516National Graphene Institute researcher Professor Coskun Kocabas is among six world-leading scientists shortlisted for the Institution of Engineering and Technology’s (IET) prestigious A F Harvey Engineering Research Prize, worth £350,000.

    ]]>
    National Graphene Institute researcher is among six world-leading scientists shortlisted for the Institution of Engineering and Technology’s (IET) prestigious A F Harvey Engineering Research Prize, worth £350,000.

    The prize is awarded annually in recognition of outstanding achievement in engineering research in the fields of medical, microwave and radar or laser/optoelectronic engineering, with the prize fund awarded to support further research led by the recipient. This year’s theme is lasers and optoelectronics.

    Professor Kocabas’ research interests include optoelectronic applications of graphene and other 2D materials. He is nominated for his significant contributions to controlling light with graphene-based devices over a broad spectral range from visible light to microwave.

    Outstanding research achievements

    Sir John O’Reilly, Chair offor the prize, said: “The A F Harvey Engineering Research Prize recognises the outstanding research achievements of the recipient, from anywhere in the world, who is identified through a search and selection process conducted by a panel of international experts from around the globe.

    “We are incredibly proud, through the generous legacy from the late Dr A F Harvey, to be able to recognise and support the furtherance of pioneering engineering research in these fields and thereby their subsequent impact in advancing the world around us," he added. "I’d like to congratulate our six finalists.”

    The prize-winner will be chosen from and announced in December 2022. The winning researcher will deliver a keynote lecture on their research in spring 2023.

    The IET’s A F Harvey prize is named after Dr A F Harvey, who bequeathed a generous sum of money to the IET for a trust fund to be set up in his name to further research in the specified fields. For more information, visit:

    is one of The University of Manchester’s - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

    ]]>
    Wed, 13 Jul 2022 11:13:28 +0100 https://content.presspage.com/uploads/1369/500_coskun-kocabas.jpg?10000 https://content.presspage.com/uploads/1369/coskun-kocabas.jpg?10000
    91ֱ graduate wins Materials Science Thesis Prize /about/news/manchester-graduate-wins-materials-science-thesis-prize/ /about/news/manchester-graduate-wins-materials-science-thesis-prize/516285Joe Mahmoud's thesis centred on the development of new methods for the rapid separation of americium from complex matrices.

    ]]>
    Joe Mahmoud, who completed his PhD at The University of Manchester in December 2021, has won the prestigious 2022 Materials Science Thesis Prize – jointly sponsored by AWE and the Worshipful Company of Armourers and Brasiers. 

    His thesis concentrated on the development of new methods for the rapid separation of americium from complex matrices. This research has many practical applications and is particularly pertinent to nuclear fuel reprocessing, environmental remediation and nuclear forensics. 

    Joe now works at the National Nuclear Laboratory in the Special Nuclear Material and Separations Science team. 

    He was presented with his Thesis Medal by the Master of Armourers and Brasiers' Company Nicky Davies, along with AWE Head of Outreach Professor Norman Godfrey, at the Materials Science Forum – held at the University of Cambridge in June. 

    Joe said: "It is a great honour to be awarded the AWE Armourers and Brasiers Thesis Prize 2022. I feel that it is a fantastic recognition of all the hard work that myself and my supervisors, both at The University of Manchester and AWE, put into the project to overcome several challenges, not least of which were those imposed by the national lockdowns. 

    "Moreover, I am very proud to be representing a radiochemistry project as the winner of the 2022 prize as I think it serves as a great reminder as to the interdisciplinary nature of materials science and nuclear science and engineering more generally. I very much look forward to continued collaboration with both the Worshipful Company of Armourers and Brasiers and AWE in the future." 

    Inaugurated in 2019, the prize is awarded annually for the best thesis on a materials science theme produced by an AWE sponsored postgraduate student and published in the 12 months preceding the judging. The process is initiated by an invitation to industrial supervisors within AWE to nominate their sponsored student(s), and the shortlisted theses are then judged by a panel of distinguished specialists for presentation, readability and scientific content. 

    Nicky Davies said: "Our modern charitable purpose is to make the UK the best place to study, research and practise materials science. Through this award given in partnership with AWE, we are delighted to recognise Joe's impressive research at the start of his career as a professional scientist specialising in materials science." 

    ]]>
    Fri, 01 Jul 2022 09:49:27 +0100 https://content.presspage.com/uploads/1369/500_joe-mahmoud-award.jpg?10000 https://content.presspage.com/uploads/1369/joe-mahmoud-award.jpg?10000
    GEIC partner community strengthens with arrivals and renewals /about/news/geic-partner-community-strengthens-with-arrivals-and-renewals/ /about/news/geic-partner-community-strengthens-with-arrivals-and-renewals/502933The Graphene Engineering Innovation Centre’s ecosystem for industrial engagement continues to grow with three more Tier 2 partners being added to the roster in recent weeks, while existing partners have also committed to the facility by renewing terms for another year.

    ]]>
    The Graphene Engineering Innovation Centre’s ecosystem for industrial engagement continues to grow with more Tier 2 partners being added to the roster in recent weeks, while existing partners have also committed to the facility by renewing terms for another year.

    Vector Homes, Genvida and Watercycle Technologies have signed new Tier 2 agreements, while Bullitt – designers of rugged tech for phones – and aerospace giant Airbus have re-signed, also as Tier 2s.

    Our Affiliate Partner scheme is growing as well, with HDH Accountants added to the list.

    James Baker, CEO of Graphene@91ֱ, said: “These partnerships demonstrate some of the range of our application work here at the GEIC: from sustainable construction to DNA sequencing and advanced membrane technology.

    “We look forward to working with our new partners and also with those renewing terms. As much as we like getting new partners, it’s just as important to ensure our existing partners are seeing success in projects and wanting to take that work forward.”

    Vector Homes

    91ֱ-based uses graphene-enhanced recycled materials to produce the unique standardised components of its houses. The company’s products will have greatly reduced embodied carbon and will not contribute to deforestation, quarrying and mining.

    The housing systems can be extended flexibly and are optimised for rapid maintenance, modification and technology incorporation.

    Feddy headshotProjects already lined up at the GEIC aim to take advantage of the expertise of the engineering staff and state-of-the-art equipment to push the technology forward alongside the firm’s supply chain.

    Nathan Feddy, CEO and co-founder (pictured), said: “We are delighted to be joining the GEIC at the centre of Manchester's world-leading advanced materials ecosystem. This partnership is a fantastic opportunity to develop the materials and systems that will enable us to achieve our goal of cutting carbon emissions and the costs of construction.”

    Genvida

    Hong Kong-based combines nanoscience and biotechnology, focusing on fourth-generation DNA sequencing technology. Its globally patented SONAS® platform (a solid-state nanopore sensor array-based technology) resolves the bottleneck in DNA sequencing and single-molecule sensing.KW-1

    SONAS® streamlines each step in genome sequencing, from smart sample preparation to rapid and precise sequencing and single-molecule identification in a fully automated ‘lab-on-a-chip’. This enables real-time and on-site diagnostics with a cloud-based bioinformatics suite.

    Dr Ka Wai Wong, co-founder and Vice President of R&D at Genvida, (pictured) said: “Our partnership with the GEIC seeks to unleash the power of fourth-generation DNA sequencing and single-molecule sensing with graphene and 2D materials integrated solid-state nanopores.”

    Watercycle Technologies

    Led by UoM alumnus Seb Leaper, Watercycle Technologies is a spin-out company from the University of Manchester developing water treatment and mineral recovery systems for a range of industries, including mining, desalination, textiles and others. The company is currently focusing on direct lithium extraction (DLE) technology to help reduce the environmental impact of established lithium extraction processes such as mining and chemical conversion.

    HDH Accountants

    Salford-based specialise in the technology and manufacturing sector, advising firms on business growth strategy with individually tailored plans. The firm joins our Affiliate Partner scheme, looking to build relationships within the growing innovation community at the GEIC.

    Anthony Hurley, Managing Director of HDH, said: “Joining the GEIC has been an amazing experience – we’ve met some amazing people and businesses and have been genuinely blown away by the opportunities and innovation happening here. 

    "We’ve already worked with several GEIC partners, providing everything from start-up advice, monthly finance and tax support through to supporting grant applications. Joining the GEIC has been great for our business and I’m looking forward to learning more and working with lots of other talented people in the future!”
     

    Graphene@91ֱ offers a range of options for industrial engagement. You can explore the benefits of different membership grades on  or fill in the to get in touch directly. A full list of our partners is available on .

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

    ]]>
    Wed, 20 Apr 2022 15:26:42 +0100 https://content.presspage.com/uploads/1369/500_geicfrontelevation116-9smaller.jpg?10000 https://content.presspage.com/uploads/1369/geicfrontelevation116-9smaller.jpg?10000
    91ֱ launches centre to design AI-enhanced robots for real world applications /about/news/manchester-launches-centre-to-design-ai-enhanced-robots-for-real-world-applications/ /about/news/manchester-launches-centre-to-design-ai-enhanced-robots-for-real-world-applications/501765The 91ֱ Centre for Robotics and AI brings together projects from across different disciplines.

    ]]>
    A new centre of excellence dedicated to designing the next generation of robots supported with state-of-the-art AI technologies has been launched at The University of Manchester. 

    The University's pulls together experts and projects from across the academic disciplines who share the challenge of working on the front line of applied robotic technologies. 

    For example, 91ֱ researchers are looking to develop robotic systems that are able to explore in the most extreme environments, such as those found in the nuclear industry, power generation or agriculture. Other expertise includes designing robots to support digital manufacture or work in the field of medicine and health. 

    While driving developments in cutting-edge robotic systems, the new multidisciplinary centre will also have a commitment to ensure autonomous systems are compatible with the values and expectations of society. Some of the breakthrough 91ֱ-led research work will include: 

    • designing control systems with a focus on bio-inspired solutions to mechatronics, eg the use of biomimetic sensors, actuators and robot platforms; 
    • developing new software engineering and AI methodologies for verification in autonomous systems, with the aim to design trustworthy autonomous systems; 
    • researching human-robot interaction, with a pioneering focus on the use of brain-inspired approaches to robot control, learning and interaction; and 
    • research in ethics and human-centred robotics issues, for the understanding of the impact of the use of robots and autonomous systems with individuals and society. 

    Angelo Cangelosi, Professor of Machine Learning and Robotics at 91ֱ, said the University offers a world-leading position in the field of autonomous systems – a technology that is set to revolutionise our lives and workplaces. 

    "91ֱ's robotics community has achieved a critical mass of expertise – however, our approach in the designing of robots and autonomous systems for real world applications is distinctive through our novel use of AI-based knowledge," added Professor Cangelosi. 

    "Our robot pioneers therefore find themselves on the interface between robotics, autonomy and AI – and their knowledge is drawn from across the University's disciplines, including humanities and biological and medical sciences. 

    "Our University now has the potential to build on these solid foundations and further establish itself as a world leader in this important and rapidly growing field with the establishment of the new interdisciplinary 91ֱ Centre for Robotics and AI." 

    The new centre has hosted an inaugural workshop – attracting more than 90 delegates – to bring a strategic focus to the robot and AI community at 91ֱ, and looks to share expertise and innovation. 

    ]]>
    Fri, 08 Apr 2022 11:11:29 +0100 https://content.presspage.com/uploads/1369/500_robotics-centre.jpg?10000 https://content.presspage.com/uploads/1369/robotics-centre.jpg?10000
    NGI shows rare physics with electrically tunable graphene device /about/news/ngi-shows-rare-physics-with-electrically-tunable-graphene-device/ /about/news/ngi-shows-rare-physics-with-electrically-tunable-graphene-device/501595A research team led by The University of Manchester’s National Graphene Institute (NGI) has developed a tunable graphene-based platform that allows for fine control over the interaction between light and matter in the terahertz (THz) spectrum, revealing rare phenomena known as exceptional points.

    ]]>
    A research team led by The University of Manchester’s has developed a tunable graphene-based platform that allows for fine control over the interaction between light and matter in the terahertz (THz) spectrum, revealing rare phenomena known as exceptional points. The work - co-authored by researchers from in the US - is (8 April) in Science.

    The work could advance optoelectronic technologies to better generate, control and sense light and potentially communications, according to the researchers. They demonstrated a way to control THz waves, which exist at frequencies between those of microwaves and infrared waves. The findings could contribute to the development of beyond-5G wireless technology for high-speed communication networks.

    Weak and strong interactions

    Light and matter can couple, interacting at different levels: weakly, where they might be correlated but do not change each other’s constituents; or strongly, where their interactions can fundamentally change the system. The ability to control how the coupling shifts from weak to strong and back again has been a major challenge to advancing optoelectronic devices - a challenge researchers have now solved.

    coskun-kocabas crop“We have demonstrated a new class of optoelectronic devices using concepts of topology - a branch of mathematics studying properties of geometric objects,” said co-corresponding author , Professor of 2D device materials at The University of Manchester (pictured). “Using exceptional point singularities, we show that topological concepts can be used to engineer optoelectronic devices that enable new ways to manipulate terahertz light.”

    Exceptional points are spectral singularities — points at which any two spectral values in an open system coalesce. They are, unsurprisingly, exceptionally sensitive and respond to even the smallest changes to the system, revealing curious yet desirable characteristics, according to co-corresponding author , Associate Professor of Engineering Science and Mechanics at Penn State.

    “At an exceptional point, the energy landscape of the system is considerably modified, resulting in reduced dimensionality and skewed topology,” said Özdemir, who is also affiliated with the at Penn State. “This, in turn, enhances the system’s response to perturbations, modifies the local density of states leading to the enhancement of spontaneous emission rates and leads to a plethora of phenomena. Control of exceptional points, and the physical processes that occur at them, could lead to applications for better sensors, imaging, lasers and much more.”

    Platform composition

    The platform the researchers developed consists of a graphene-based tunable THz resonator, with a gold-foil gate electrode forming a bottom reflective mirror. Above it, a graphene layer is book-ended with electrodes, forming a tunable top mirror. A non-volatile ionic liquid electrolyte layer sits between the mirrors, enabling control of the top mirror’s reflectivity by changing the applied voltage. In the middle of the device, between the mirrors, are molecules of alpha lactose, a sugar commonly found in milk.  

    The system is controlled by two adjusters. One raises the lower mirror to change the length of the cavity - tuning the frequency of resonation to couple the light with the collective vibrational modes of the organic sugar molecules, which serve as a fixed number of oscillators for the system. The other adjuster changes the voltage applied to the top graphene mirror - altering the graphene’s reflective properties to transition the energy loss imbalances to adjust coupling strength. The delicate, fine tuning shifts weakly coupled terahertz light and organic molecules to become strongly coupled and vice versa.

    “Exceptional points coincide with the crossover point between the weak and strong coupling regimes of terahertz light with collective molecular vibrations,” Özdemir said.

    He noted that these singularity points are typically studied and observed in the coupling of analogous modes or systems, such as two optical modes, electronic modes or acoustic modes.

    “This work is one of rare cases where exceptional points are demonstrated to emerge in the coupling of two modes with different physical origins,” Kocabas said. “Due to the topology of the exceptional points, we observed a significant modulation in the magnitude and phase of the terahertz light, which could find applications in next-generation THz communications.”

    Unprecedented phase modulation in the THz spectrum

    As the researchers apply voltage and adjust the resonance, they drive the system to an exceptional point and beyond. Before, at and beyond the exceptional point, the geometric properties - the topology - of the system change.

    One such change is the phase modulation, which describes how a wave changes as it propagates and interacts in the THz field. Controlling the phase and amplitude of THz waves is a technological challenge, the researchers said, but their platform demonstrates unprecedented levels of phase modulation. The researchers moved the system through exceptional points, as well as along loops around exceptional points in different directions, and measured how it responded through the changes. Depending on the system’s topology at the point of measurement, phase modulation could range from zero to four magnitudes larger.

    “We can electrically steer the device through an exceptional point, which enables electrical control on reflection topology,” said first author Dr M Said Ergoktas. “Only by controlling the topology of the system electronically could we achieve these huge modulations.” 

    According to the researchers, the topological control of light-matter interactions around an exceptional point enabled by the graphene-based platform has potential applications ranging from topological optoelectronic and quantum devices to topological control of physical and chemical processes.

     

    Contributors include: Kaiyuan Wang, Gokhan Bakan, Thomas B. Smith, Alessandro Principi and Kostya S. Novoselov, University of Manchester; Sina Soleymani, graduate student in the Penn State Department of Engineering Science and Mechanics; Sinan Balci, Izmir Institute of Technology, Turkey; Nurbek Kakenov, who conducted work for this paper while at Bilkent University, Turkey.

    The European Research Council, Consolidator Grant (SmartGraphene), the Air Force Office of Scientific Research Multidisciplinary University Research Initiative Award on Programmable Systems with Non-Hermitian Quantum Dynamics and the Air Force Office of Scientific Research Award supported this work.

    ]]>
    Fri, 08 Apr 2022 10:09:29 +0100 https://content.presspage.com/uploads/1369/500_ep-012-sugar-bigview.jpg?10000 https://content.presspage.com/uploads/1369/ep-012-sugar-bigview.jpg?10000
    NGI uses twist to engineer 2D semiconductors with built-in memory functions /about/news/ngi-uses-twist-to-engineer-2d-semiconductors-with-built-in-memory-functions/ /about/news/ngi-uses-twist-to-engineer-2d-semiconductors-with-built-in-memory-functions/495916A team of researchers at The University of Manchester’s National Graphene Institute and the National Physical Laboratory has demonstrated that slightly twisted 2D transition metal dichalcogenides (TMDs) display room-temperature ferroelectricity.

    ]]>
    A team of researchers at The University of Manchester’s National Graphene Institute (NGI) and the National Physical Laboratory (NPL) has demonstrated that slightly twisted 2D transition metal dichalcogenides (TMDs) display room-temperature ferroelectricity.

    This characteristic, combined with TMDs’ outstanding optical properties, can be used to build multi-functional optoelectronic devices such as transistors and LEDs with built-in memory functions on nanometre length scale.

    Ferroelectrics are materials with two or more electrically polarisable states that can be reversibly switched with the application of an external electric field. This material property is ideal for applications such as non-volatile memory, microwave devices, sensors and transistors. Until recently, out-of-plane switchable ferroelectricity at room temperature had been achieved only in films thicker than 3 nanometres.

    2D heterostructures

    Since the isolation of graphene in 2004, researchers across academia have studied a variety of new 2D materials with a wide range of exciting properties. These atomically thin 2D crystals can be stacked on top of one another to create so-called heterostructures - artificial materials with tailored functions.

    More recently, a team of researchers from NGI, in collaboration with NPL, demonstrated that below a twist angle of 2o, atomic lattices physically reconstruct to form regions (or domains) of perfectly stacked bilayers separated by boundaries of locally accumulated strain.  For two monolayers stacked parallel to each other, a tessellated pattern of mirror-reflected triangular domains is created. Most importantly, the two neighbouring domains have an asymmetric crystal symmetry, causing an asymmetry in their electronic properties.

    Ferroelectric switching at room temperature

    In the work, , the team demonstrated that the domain structure created with low-angle twisting hosts interfacial ferroelectricity in bilayer TMDs. Kelvin probe force microscopy revealed that neighbouring domains are oppositely polarised and electrical transport measurements demonstrated reliable ferroelectric switching at room temperature.

    The team went on to develop a scanning electron microscope (SEM) technique with enhanced contrast, using signal from back-scattered electrons. This made it possible to apply an electric field in-situ while imaging changes to the domain structure in a non-invasive manner, providing essential information on how the domain switching mechanism works. The boundaries separating the oppositely polarised domains were found to expand and contract depending on the sign of the applied electric field and led to a significant redistribution of the polarised states.

    This work clearly demonstrates that the twist degree of freedom can allow the creation of atomically thin optoelectronics with tailored and multi-functional properties.

    Wide scope for tailored 2D materialsAstrid_Weston 250px square

    Lead author Astrid Weston (pictured right) said: “It’s very exciting that we can demonstrate that this simple tool of twisting can engineer new properties in 2D crystals. With the wide variety of 2D crystals to choose from, it provides us with almost unlimited scope to create perfectly tailored artificial materials.”

    Co-author Dr Eli G Castanon added: “Being able to observe the pattern and behaviour of ferroelectric domains in structures that have nanometre thickness with KPFM and SEM was very exciting. The advancement of characterisation techniques together with the extensive possibilities for the formation of novel heterostructures of 2D materials paves the way to achieve new capabilities at the nanoscale for many industries.”

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

    ]]>
    Tue, 01 Mar 2022 13:44:03 +0000 https://content.presspage.com/uploads/1369/500_copyofmos2-pressrelease-v4.jpg?10000 https://content.presspage.com/uploads/1369/copyofmos2-pressrelease-v4.jpg?10000
    The Eli and Britt Harari Graphene Enterprise Award 2022 /about/news/the-eli-and-britt-harari-graphene-enterprise-award-2022/ /about/news/the-eli-and-britt-harari-graphene-enterprise-award-2022/493642Prizes of £50,000 and £20,000 will be awarded to the individuals or teams who can best demonstrate how their technology relating to graphene or other 2D materials could be applied to a viable commercial opportunity. 

    ]]>
    Now into its ninth year, the competition, in association with Professor Sir Andre Geim, is now open to all students, postdoctoral researchers, and recent graduates of The University of Manchester. This annual competition, managed by the (MEC), encourages new ideas for enterprises involving graphene and other 2D based materials.

    Graphene, a two-dimensional carbon material, is a game-changing UK discovery and its properties make it one of the most important breakthroughs in recent memory. Graphene is a wonder material, with incredible electrical, mechanical, and thermal properties.

    Prizes of £50,000 and £20,000 will be awarded to the individuals or teams who can best demonstrate how their technology relating to graphene or other 2D materials could be applied to a viable commercial opportunity. This year will also see the inclusion of an additional prize that celebrates the University's position leading the world on sustainable development, more to follow!

    Applications will be judged on the strength of their business plan to develop a new graphene-related business. The award then becomes seed funding to allow the candidate to take the first steps towards realising this plan. It recognises the role that high-level, flexible early-stage financial support can play in the successful development of a business targeting the full commercialisation of a product or technology related to research in graphene.

    Eli Harari Graphene Enterprise Award 2022: introduction and overview

    Join us on Tuesday 10 May and hear from Tony Walker, Deputy Director of the , who will give an overview of the competition, and share with you hints and tips as to what the judges will be looking for in your application.

    You will learn about the support available to support you with your application and how to access this

    We're also pleased to welcome and introduce you to a previous winner of the competition, who can share with you their experience and how they have progressed with their idea since being involved with the Harari programme.

    The final deadline for completed competition entries is midday on Friday, 10 June 2022.

    Key Dates*

    • Monday, 14 February - competition opens for expressions of interest
    • Tuesday, 10 May -
    • Week of 23 May - meet with application experts from GEIC
    • Week of 30 May - meet with commercialisation experts
    • Friday, 10 June - entry deadline, 12pm
    • Wednesday, 15 June – Finalists notified
    • Monday, 27 June - Finalists invited to pitch to Mock Panel
    • Thursday, 30 June - Finalists invited to pitch in the Final Judging Panel
    • Monday, 4 July - Final Judging Panel
    • Friday, 8 July - Winners Awards Event

    *timings may vary 

    ]]>
    Mon, 14 Feb 2022 13:39:07 +0000 https://content.presspage.com/uploads/1369/500_ehthumb.jpg?10000 https://content.presspage.com/uploads/1369/ehthumb.jpg?10000
    NGI advances graphene spintronics as 1D contacts improve mobility in nano-scale devices /about/news/ngi-advances-graphene-spintronics-as-1d-contacts-improve-mobility-in-nano-scale-devices/ /about/news/ngi-advances-graphene-spintronics-as-1d-contacts-improve-mobility-in-nano-scale-devices/492715Researchers at The University of Manchester may have cleared a significant hurdle on the path to quantum computing, demonstrating step-change improvements in the spin transport characteristics of nanoscale graphene-based electronic devices.

    ]]>
    Researchers at The University of Manchester may have cleared a significant hurdle on the path to quantum computing, demonstrating step-change improvements in the spin transport characteristics of nanoscale graphene-based electronic devices.

    The team - comprising researchers from the National Graphene Institute (NGI) led by Dr Ivan Vera Marun, alongside collaborators from Japan and including students internationally funded by Ecuador and Mexico - used monolayer graphene encapsulated by another 2D material (hexagonal boron nitride) in a so-called van der Waals heterostructure with one-dimensional contacts (main picture, above). This architecture was observed to deliver an extremely high-quality graphene channel, reducing the interference or electronic ‘doping’ by traditional 2D tunnel contacts.

    ‘Spintronic’ devices, as they are known, may offer higher energy efficiency and lower dissipation compared to conventional electronics, which rely on charge currents. In principle, phones and tablets operating with spin-based transistors and memories could be greatly improved in speed and storage capacity, exceeding Moore’s Law

    , the 91ֱ team measured electron mobility up to 130,000cm2/Vs at low temperatures (20K or -253oC). For purposes of comparison, the only previously published efforts to fabricate a device with 1D contacts achieved mobility below 30,000cm2/Vs, and the 130k figure measured at the NGI is higher than recorded for any other previous graphene channel where spin transport was demonstrated.

    The researchers also recorded spin diffusion lengths approaching 20μm. Where longer is better, most typical conducting materials (metals and semiconductors) have spin diffusion lengths <1μm. The value of spin diffusion length observed here is comparable to the best graphene spintronic devices demonstrated to date.

    Lead author of the study Victor Guarochico said: “Our work is a contribution to the field of graphene spintronics. We have achieved the largest carrier mobility yet regarding spintronic devices based on graphene. Moreover, the spin information is conserved over distances comparable with the best reported in the literature. These aspects open up the possibility to explore logic architectures using lateral spintronic elements where long-distance spin transport is needed.”

    Co-author Chris Anderson added: “This research work has provided exciting evidence for a significant and novel approach to controlling spin transport in graphene channels, thereby paving the way towards devices possessing comparable features to advanced contemporary charge-based devices. Building on this work, bilayer graphene devices boasting 1D contacts are now being characterised, where the presence of an electrostatically tuneable bandgap enables an additional dimension to spin transport control.”

    Discover more about our capabilities in graphene and 2D material research at .

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

    ]]>
    Thu, 10 Feb 2022 15:10:46 +0000 https://content.presspage.com/uploads/1369/500_toc-graphic-highres1200px.jpg?10000 https://content.presspage.com/uploads/1369/toc-graphic-highres1200px.jpg?10000
    Cosmic physics mimicked on table-top as graphene enables Schwinger effect /about/news/cosmic-physics-mimicked-on-table-top-as-graphene-enables-schwinger-effect/ /about/news/cosmic-physics-mimicked-on-table-top-as-graphene-enables-schwinger-effect/491086An international research team led by The University of Manchester has succeeded in observing the so-called Schwinger production of particle-antiparticle pairs from vacuum, an elusive process that normally occurs only in cosmic events. 

    ]]>
    An international research team led by The University of Manchester has succeeded in observing the so-called Schwinger effect, an elusive process that normally occurs only in cosmic events. By applying high currents through specially designed graphene-based devices, the team - based at the National Graphene Institute - succeeded in producing particle-antiparticle pairs from a vacuum.

    A vacuum is assumed to be completely empty space, without any matter or elementary particles. However, it was predicted by Nobel laureate Julian Schwinger 70 years ago that intense electric or magnetic fields can break down the vacuum and spontaneously create elementary particles. 

    This requires truly cosmic-strength fields such as those around or created transitorily during high-energy collisions of charged nuclei. It has been a longstanding goal of particle physics to probe these theoretical predictions experimentally and some are currently planned for high-energy colliders around the world.

    Now an international, 91ֱ-led research team – headed by another Nobel laureate, Prof Andre Geim, in collaboration with colleagues from UK, Spain, US and Japan - has used graphene to mimic the Schwinger production of electron and positron pairs.

    Exceptionally strong electric fields

    In the , they report specially designed devices such as narrow constrictions and superlattices made from graphene, which allowed the researchers to achieve exceptionally strong electric fields in a simple table-top setup. Spontaneous production of electron and hole pairs was clearly observed (holes are a solid-state analogue of subatomic particles called positrons) and the process's details agreed well with theoretical predictions.

    The scientists also observed another unusual high-energy process that so far has no analogies in particle physics and astrophysics. They filled their simulated vacuum with electrons and accelerated them to the maximum velocity allowed by graphene’s vacuum, which is 1/300 of the speed of light.  At this point, something seemingly impossible happened: electrons seemed to become superluminous, providing an electric current higher than allowed by general rules of quantum condensed matter physics. The origin of this effect was explained as spontaneous generation of additional charge carriers (holes). Theoretical description of this process provided by the research team is rather different from the Schwinger one for the empty space.

    “People usually study electronic properties using tiny electric fields that allows easier analysis and theoretical description. We decided to push the strength of electric fields as much as possible using different experimental tricks not to burn our devices,” said the paper’s first author Dr Alexey Berduygin, a post-doctoral researcher in The University of Manchester's Department of Physics and Astronomy.

    Co-lead author from the same department Dr Na Xin added: “We just wondered what could happen at this extreme. To our surprise, it was the Schwinger effect rather than smoke coming out of our set-up.”

    Another leading contributor, Dr Roshan Krishna Kumar from the Institute of Photonic Sciences in Barcelona, said: “When we first saw the spectacular characteristics of our superlattice devices, we thought ‘wow … it could be some sort of new superconductivity’. Although the response closely resembles those routinely observed in superconductors, we soon found that the puzzling behaviour was not superconductivity but rather something in the domain of astrophysics and particle physics. It is curious to see such parallels between distant disciplines.”

    The research is also important for the development of future electronic devices based on two-dimensional quantum materials and establishes limits on wiring made from graphene that was already known for its remarkable ability to sustain ultra-high electric currents.

    Main illustration by Matteo Ceccanti and Simone Cassandra.

    Advanced materials is one of The University of Manchester’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

    ]]>
    Fri, 28 Jan 2022 10:38:29 +0000 https://content.presspage.com/uploads/1369/500_science-final-4k-compositematteo.jpg?10000 https://content.presspage.com/uploads/1369/science-final-4k-compositematteo.jpg?10000