91直播

Skip to main content

Contact us

Get in touch with the Science and Engineering Marketing Team
Email: 

Social media

Latest news

14
March
2023
|
10:23
Europe/London

Nanorippled graphene becomes a catalyst

A team of researchers led by Prof. Andre Geim from the National Graphene Institute (NGI) have discovered that nanoripples in graphene can make it a strong catalyst, contrary to general expectations that the carbon sheet is as chemically inert as the bulk graphite from which it is obtained.

in the Proceedings of the National Academy of Sciences (PNAS), the research has shown that graphene with nanoscale corrugations of its surface can accelerate hydrogen splitting as well as the best metallic-based catalysts. This unexpected effect is likely to be present in all two-dimensional materials, which are all inherently non-flat.

The 91直播 team in collaboration with researchers from China and USA conducted a series of experiments to show that non-flatness of graphene makes it a strong catalyst. First, using ultrasensitive gas flow measurements and Raman spectroscopy, they demonstrated that graphene鈥檚 nanoscale corrugations were linked to its chemical reactivity with molecular hydrogen (H2) and that the activation energy for its dissociation into atomic hydrogen (H) was relatively small.

The team evaluated whether this reactivity is enough to make the material an efficient catalyst. To this end, the researchers used a mixture of hydrogen and deuterium (D2) gases and found that graphene indeed behaved as a powerful catalyst, converting H2 and D2 into HD. This was in stark contrast to the behaviour of graphite and other carbon-based materials under the same conditions. The gas analyses revealed that the amount of HD generated by monolayer graphene was approximately the same as for the known hydrogen catalysts, such as zirconia, magnesium oxide and copper, but graphene was required only in tiny quantities, less than 100 times of the latter catalysts.

鈥淥ur paper shows that freestanding graphene is quite different from both graphite and atomically flat graphene that are chemically extremely inert. We have also proved that nanoscale corrugations are more important for catalysis than the 鈥榰sual suspects鈥 such as vacancies, edges and other defects on graphene鈥檚 surface鈥 said Dr Pengzhan Sun, first author of the paper.

Lead author of the paper Prof. Geim added, 鈥淎s nanorippling naturally occurs in all atomically thin crystals, because of thermal fluctuations and unavoidable local mechanical strain, other 2D materials may also show similarly enhanced reactivity. As for graphene, we can certainly expect it to be catalytically and chemically active in other reactions, not only those involving hydrogen.鈥

鈥2D materials are most often perceived as atomically flat sheets, and effects caused by unavoidable nanoscale corrugations have so far been overlooked. Our work shows that those effects can be dramatic, which has important implications for the use of 2D materials. For example, bulk molybdenum sulphide and other chalcogenides are often employed as 3D catalysts. Now we should wonder if they could be even more active in their 2D form鈥.

Advanced materials is one of The University of Manchester鈥檚 research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

Share this page